×

zbMATH — the first resource for mathematics

Adaptive synchronization of two different chaotic systems with time varying unknown parameters. (English) Zbl 1147.93397
Summary: A nonlinear control method based on Lyapunov stability theorem is proposed to design an adaptive controller for synchronizing two different chaotic systems. It is assumed that the unknown parameters of the drive and the response chaotic systems are time varying. It is shown that the proposed scheme can identify the system parameters if the system parameters are time invariant and the richness conditions are satisfied. To demonstrate the effectiveness of the proposed technique it has been applied to Lorenz-Chen dynamic systems, as drive-response systems. Simulation results indicate that the proposed adaptive controller has a high performance in synchronizing two chaotic systems.

MSC:
93D21 Adaptive or robust stabilization
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
93C40 Adaptive control/observation systems
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C10 Nonlinear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chen G. Control and synchronization of chaos, a bibliography, Department of Electrical Engineering, University of Houston, TX, USA, 1997.
[2] Chen, G.; Dong, X., On feedback control of chaotic continuous-time systems, IEEE trans circuits & systems, 40, 591-601, (1993) · Zbl 0800.93758
[3] Carroll, T.L.; Pecora, L.M., Synchronization in chaotic systems, Phys rev lett, 64, 821-824, (1990) · Zbl 0938.37019
[4] Carroll, T.L.; Pecora, L.M., Synchronizing chaotic circuits, IEEE trans circuits & systems, 38, 453-456, (1991)
[5] Pecora, L.M.; Carroll, T.L., Driving systems with chaotic signals, Phys rev A, 44, 2374-2383, (1991)
[6] Kapitaniak, T., Continuous control and synchronization in chaotic systems, Chaos solitons & fractals, 6, 3, 237-244, (1995) · Zbl 0976.93504
[7] Kocarev, L.; Halle, K.S.; Eckert, K.; Chua, L.O.; Parlitz, U., Experimental observation of antimonotonicity in chua’s circuit, Int J bifurcation & chaos, 3, 4, 1051-1055, (1993) · Zbl 0894.58061
[8] Cuomo, K.M.; Oppenheim, A.V., Circuit implementation of synchronized chaos with applications to communications, Phys rev lett, 71, 65-68, (1993)
[9] Kocarev L, Parlitz U. Generalized synchronization in chaotic systems. Phys Rev Lett. 1995 Proc. SPIE; 2612:57-61.
[10] Peng, J.H.; Ding, E.J.; Ding, M.; Yang, W., Synchronizing hyperchaos with a scalar transmitted signal, Phys rev lett, 76, 904-907, (1996)
[11] Feng, J.; Chen, S.; Wang, C., Adaptive synchronization of uncertain hyperchaotic systems based on parameter identification, Chaos solitons & fractals, 26, 1163-1169, (2005) · Zbl 1122.93401
[12] Kocarev, L.; Parlitz, U., Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems, Phys rev lett, 76, 1816-1819, (1996)
[13] Murali, K.; Lakshmanan, M., Secure communication using a compound signal from generalized synchronizable chaotic systems, Phys lett A, 241, 303-310, (1998) · Zbl 0933.94023
[14] Park, J.H., Adaptive synchronization of hyperchaotic Chen system with uncertain parameters, Chaos solitons & fractals, 26, 959-964, (2005) · Zbl 1093.93537
[15] Bai, E.; Lonngrn, K.E., Sequential synchronization of two Lorenz systems using active control, Chaos solitons & fractals, 11, 1041-1044, (2000) · Zbl 0985.37106
[16] Park, J.H., Synchronization of gnesio chaotic system via backstepping approach, Chaos solitons & fractals, 27, 1369-1375, (2006) · Zbl 1091.93028
[17] Wang, C.; Ge, S., Adaptive synchronization of uncertain chaotic systems via backstepping design, Chaos solitons & fractals, 12, 1199-1206, (2001) · Zbl 1015.37052
[18] Yassen, M.T., Adaptive chaos control and synchronization for uncertain new chaotic dynamical system, Phys lett A, 350, 36-43, (2006) · Zbl 1195.34092
[19] Chen, S.; Lu, J., Parameters identification and synchronization of chaotic systems based upon adaptive control, Phys lett A, 299, 353-358, (2002) · Zbl 0996.93016
[20] Park, J.H., Chaos synchronization between two different chaotic dynamical systems, Chaos solitons & fractals, 27, 549-554, (2006) · Zbl 1102.37304
[21] Yassen, M.T., Chaos synchronization between two different chaotic systems using active control, Chaos solitons & fractals, 23, 131-140, (2005) · Zbl 1091.93520
[22] Chen, H.K., Synchronization of two different chaotic systems: a new system and each of the dynamical systems Lorenz, Chen and Lu, Chaos solitons & fractals, 25, 1049-1056, (2005) · Zbl 1198.34069
[23] Huang, L.; Feng, R.; Wang, M., Synchronization of chaotic systems via nonlinear control, Phys lett A, 320, 271-275, (2004) · Zbl 1065.93028
[24] He, M.F.; Mu, Y.M.; Zhao, L.Z., Synchronization on parametric adaptive control algorithm, Acta phys sin, 49, 829-832, (2000)
[25] Vassiliadis, D., Parametric adaptive control and parameter identification of low-dimensional chaotic systems, Physica D, 71, 319-341, (1994) · Zbl 0825.93365
[26] Fotsin, H.; Bowong, S., Adaptive control and synchronization of chaotic systems consisting of van der Pol oscillators coupled to linear oscillators, Chaos solitons & fractals, 27, 822-835, (2006) · Zbl 1091.93015
[27] Zhang, H.; Huang, W.; Wang, Z.; Chai, T., Adaptive synchronization between two different chaotic systems with unknown parameters, Phys lett A, 350, 363-366, (2006) · Zbl 1195.93121
[28] Kakmeni, F.M.M.; Bowong, S.; Tchawoua, C., Nonlinear adaptive synchronization of a class of chaotic systems, Phys lett A, 355, 47-54, (2006)
[29] Yan, Z.; Yu, P., Linear feedback control, adaptive feedback control and their combination for chaos (lag) synchronization of LC chaotic systems, Chaos solitons & fractals, 33, 419-435, (2007) · Zbl 1136.93430
[30] Kakmeni, F.M.M.; Bowong, S.; Tchawoua, C., Reduced-order synchronization of uncertain chaotic systems via adaptive control, Commun nonlinear sci num simulation, 11, 810-830, (2006) · Zbl 1130.93404
[31] Lazzouni SA, Bowong S, Kakmeni FMM, Cherki B. An adaptive feedback control for chaos synchronization of nonlinear systems with different order. Commun Nonlinear Sci Num Simulation, in press. · Zbl 1234.70006
[32] Fotsin, H.; Bowong, S.; Daafouz, J., Adaptive synchronization of two chaotic systems consisting of modified Van der pol – duffing and Chua oscillators, Chaos solitons & fractals, 26, 215-229, (2005) · Zbl 1122.93069
[33] Luo, X.S.; Fang, J.Q.; Wang, L.H., Output feedback synchronization of a chaotic arneodo system, Acta phys sin, 48, 2196-2201, (1999)
[34] Dai, D.; Ma, X.-K., Chaos synchronization by using intermittent parametric adaptive control method, Phys lett A, 288, 23-28, (2001) · Zbl 0971.37043
[35] Suykens, J.; Vandewalle, J.; Chua, L., Nonlinear H∞ synchronization of chaotic lur’e systems, Int J bifurcation & chaos, 7, 6, 1323-1325, (1997) · Zbl 0967.93508
[36] Suykens, J.; Curran, P.; Chua, L., Robust synthesis for master – slave synchronization of lur’e systems, IEEE trans circuits & systems I, 46, 841-850, (1999) · Zbl 1055.93549
[37] Sun, J.; Zhang, Y.; Wang, L.; Wu, Q., Impulsive robust control of uncertain luré systems, Phys lett A, 304, 130-135, (2002) · Zbl 1001.93071
[38] Sun, J.; Zhang, Y.; Qiao, F.; Wu, Q., Some impulsive synchronization criterions for coupled chaotic systems via unidirectional linear error feedback approach, Chaos solitons & fractals, 19, 1049-1055, (2004) · Zbl 1069.37029
[39] Chen, C.; Feng, G.; Guan, X., Robust synchronization of chaotic lur’e systems via delayed feedback control, Phys lett A, 321, 344-354, (2004) · Zbl 1118.81325
[40] Liao, T.L.; Huang, N.S., Control and synchronization of discrete-time chaotic systems via variable structure control technique, Phys lett A, 234, 262-268, (1997) · Zbl 1044.37556
[41] Yau, H.T., Design of adaptive sliding mode controller for chaos synchronization with uncertainties, Chaos solitons & fractals, 22, 341-347, (2004) · Zbl 1060.93536
[42] Solak, E.; Morgul, O.; Ersoy, U., Observer-based control of a class of chaotic systems, Phys lett A, 279, 47-55, (2001) · Zbl 0972.37020
[43] Ramirez, J.A.; Puebla, H.; Cervantes, H., Convergence rate of observer-based approach for chaotic synchronization, Phys lett A, 289, 193-198, (2001) · Zbl 1025.37047
[44] Skogestad, S.; Postlethwaite, I., Multivariable feedback control analysis and design, (1996), John Wiley and Sons New York · Zbl 0842.93024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.