## Globally asymptotic stability in two periodic delayed competitive systems.(English)Zbl 1148.34046

The authors study the following Lotka-Volterra type competition systems with multiple time delays and periodic coefficients \begin{aligned} y_1^{\prime}(t)=&y_1(t)[r_1(t)-a_1(t)y_1(t)+\sum_{i=1}^{n}b_{1i}(t)y_1(t-\tau_i(t)) -\sum_{j=1}^{m}c_{1j}(t)y_2(t-\rho_j(t))],\\ y_2^{\prime}(t)=&y_2(t)[r_2(t)-a_2(t)y_2(t)+\sum_{j=1}^{m}b_{2j}(t)y_2(t-\eta_j(t)) -\sum_{i=1}^{n}c_{2i}(t)y_1(t-\sigma_i(t))], \end{aligned}\tag{1} where $$a_1, a_2, c_{1j}, c_{2j}\in C(R, (0,+\infty)),$$ $$b_{1i}, b_{2i}\in C(R, R)$$, $$\tau_i, \sigma_i,$$ $$\rho_j, \eta_j\in C^1(R, [0,+\infty))$$ $$(i=1,2,\dots, n; j=1,2,\dots, m)$$ are $$\omega$$-periodic functions, $$r_k\in C(R, R)$$ are $$\omega$$-periodic functions satisfying $$\int_{0}^{\omega}r_kdt>0, k=1,2$$. Sufficient conditions are derived for the existence of positive periodic solutions to system (1) by using the continuation theorem developed by R. E. Gaines and J. L. Mawhin [Coincidence degree and nonlinear differential equations. Springer, Berlin (1977; Zbl 0339.47031)].

### MSC:

 34K13 Periodic solutions to functional-differential equations 34K20 Stability theory of functional-differential equations 92D25 Population dynamics (general)

Zbl 0339.47031
Full Text:

### References:

 [1] Freedman, H.I.; Wu, J., Periodic solution of single species models with periodic delay, SIAM J. math. anal., 23, 689-701, (1992) · Zbl 0764.92016 [2] Halbach, U., Life table data and population dynamics of the rotifer brachionous calyciflorus palls as influenced by periodically oscillating termperature, Effects of temperature on ectothermic organisms, (1973), Springer-Verlag Heidelberg, pp. 217-228 [3] Fan, M.; Wang, K., Periodic solutions of single population model with hereditary effect, Appl. math., 13, 58-61, (2000), (in Chinese) · Zbl 1008.92028 [4] Miler, R.K., On voterra’s population equation, SIAM J. appl. math., 14, 446-452, (1996) [5] Seifert, G., On delay-differential equation for single species population variations, Nonlinear anal. TMA, 9, 1051-1059, (1987) · Zbl 0629.92019 [6] Freedman, H.I.; Xia, H., Periodic solution of single species models with delay, differential equations, dynamical systems and control science, Lecture note pure appl. math., 152, 55-74, (1994) · Zbl 0794.34056 [7] H. Fujimoto, Dynamical behaviours for population growth equations with delays, Nonlinear Anal. TMA 31 (1998) 549-558. · Zbl 0887.34071 [8] Chen, B.S.; Liu, Q.Y., On the stable periodic solutions of single species models with hereditary effect, Math. appl., 12, 42-46, (1999), (in Chinese) [9] Kuang, Y.; Smith, H.L., Global stability for infinite delay lotka – volterra type systems, J. differ. eq., 103, 221-246, (1993) · Zbl 0786.34077 [10] Zhang, J.; Chen, L., Periodic solutions of single-species nonautonomous diffusion models with continuous time delays, Mothl. comput. modell., 23, 17-27, (1996) · Zbl 0864.60058 [11] Liu, Z.J.; Wang, W.D., Persistence and periodic solutions of a nonautonomous predator – prey diffusion system with Holling. III: functional response and continuous delay, Discr. cont. dynam. syst. ser. B, 4, 653-662, (2004) · Zbl 1101.92052 [12] Alvarez, C.; Lazer, A., An application of topological degree to the periodic competing species problem, J. aust. math. soc., 28, 202-219, (1986) · Zbl 0625.92018 [13] Ahmad, S., Convergence and ultimate bounds of solutions of the nonautonomous volterra – lotka competition equations, J. math. anal. appl., 127, 377-387, (1987) · Zbl 0648.34037 [14] Gopalsamy, K., Exchange of equilibria in two species lotka – volterra competition models, J. aust. math. soc. ser. B, 24, 160-170, (1982) · Zbl 0498.92016 [15] Glopalsamy, K., Global asymptotic stability in a periodic lotka – volterra system, J. aust. math. soc. ser. B, 27, 66-72, (1985) · Zbl 0588.92019 [16] Wang, W.D.; Chen, L.S.; Lu, Z.Y., Global stability of a competition model with periodic coefficients and time delays, Can. appl. math. quart., 3, 365-378, (1995) · Zbl 0845.92020 [17] Burton, T.A., Stability and periodis solutions of ordinary and functional equations, (1985), Academic Press Orlando, FL · Zbl 0635.34001 [18] Liu, Z.J.; Tan, R.H.; Chen, L.S., Global stability in a periodic delayed predator – prey system, Appl. math. comput., 186, 389-403, (2007) · Zbl 1122.34048 [19] Tang, B.R.; Kuang, Y., Existence, uniqueness and asymptotic stability of periodic solutions of periodic functional differential systems, Tohoku math. J., 49, 217-239, (1997) · Zbl 0883.34074 [20] Smith, J.M., Mathematical ideas in biology, (1968), Cambridge University Press London [21] Gaines, R.E.; Mawhin, J.L., Coincidence degree and nonlinear differential equations, (1977), Springer-Verlag Berlin · Zbl 0326.34021 [22] Gopalsamy, K., Stability and oscillation in delay differential equations of population dynamics, Mathematics and its applications, vol. 74, (1992), Kluwer Academic Dordrecht · Zbl 0752.34039 [23] Fan, M.; Wang, K.; Jiang, D.Q., Existence and global attractivity of positive periodic solutions of periodic n-species lotka – volterra competition systems with several deviating arguments, Math. biosci., 160, 47-61, (1999) · Zbl 0964.34059 [24] Wang, W.D.; Ma, Z.E., Harmless delay for uniform persistence, J. math. anal. appl., 158, 256-268, (1991) · Zbl 0731.34085 [25] Fan, M.; Wang, K.; Ke; Wong, P.J.Y.; Agarwal, R.P., Periodicity and stability in periodic n-species lotka – volterra competition system with feedback controls and deviating arguments, Acta math. sin. (engl. ser.), 19, 801-822, (2003) · Zbl 1047.34080 [26] Tang, X.H.; Cao, D.M.; Zou, X.F., Global attractivity of positive periodic solution to periodic lotka – volterra competition systems with pure delay, J. differ. eq., 228, 580-610, (2006) · Zbl 1113.34052 [27] Teng, Z.D., Nonautonomous lotka – volterra systems with delays, J. differ. eq., 179, 538-561, (2002) · Zbl 1013.34072 [28] Li, Y.K., Periodic solutions for delay lotka – volterra competition systems, J. math. anal. appl, 246, 230-244, (2000) · Zbl 0972.34057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.