×

zbMATH — the first resource for mathematics

A review of particle swarm optimization. II: Hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. (English) Zbl 1148.68375
Summary: Particle Swarm Optimization (PSO), in its present form, has been in existence for roughly a decade, with formative research in related domains (such as social modelling, computer graphics, simulation and animation of natural swarms or flocks) for some years before that; a relatively short time compared with some of the other natural computing paradigms such as artificial neural networks and evolutionary computation. However, in that short period, PSO has gained widespread appeal amongst researchers and has been shown to offer good performance in a variety of application domains, with potential for hybridisation and specialisation, and demonstration of some interesting emergent behaviour. This paper aims to offer a compendious and timely review of the field and the challenges and opportunities offered by this welcome addition to the optimization toolbox. Part I [A. Banks, J. Vincent and C. Anyakoha, ”A review of particle swarm optimization. I: Background and development”, Nat. Comput. 6, No. 4, 467-484 (2007; Zbl 1125.90065)] discusses the location of PSO within the broader domain of natural computing, considers the development of the algorithm, and refinements introduced to prevent swarm stagnation and tackle dynamic environments. Part II considers current research in hybridisation, combinatorial problems, multicriteria and constrained optimization, and a range of indicative application areas.

MSC:
68Q10 Modes of computation (nondeterministic, parallel, interactive, probabilistic, etc.)
Software:
LOLIMOT; MOPSO
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abido MA (2002) Optimal power flow using particle swarm optimization. Int J Elect Power Energy Syst 24(7):563–571 · doi:10.1016/S0142-0615(01)00067-9
[2] Angeline PJ (1998) Using selection to improve particle swarm optimization. In: Proceedings of the IEEE congress on evolutionary computation, Anchorage, Alaska
[3] Balci HH, Valenzuela JF (2004) Scheduling electric power generators using particle swarm optimization combined with the Lagrangian relaxation method. Int J Appl Math Comput Sci 14(3):411–421 · Zbl 1137.90478
[4] Baltar AM, Fontane DG (2006) A generalized multiobjective particle swarm optimization solver for spreadsheet models: application to water quality. In: Proceedings of the twenty sixth annual American geophysical union hydrology days, 20–22 March 2006
[5] Baumgartner U, Magele C, Renhart W (2004) Pareto optimality and particle swarm optimization. IEEE Trans Magn 40(2):1172–1175
[6] Brabazon A, Silva A, de Sousa TF, O’Neill M, Matthews R, Costa E (2005) Investigating strategic inertia using orgswarm. Informatica 29:125–141
[7] Brits R, Engelbrecht AP, van den Bergh F (2002) A niching particle swarm optimizer. In: Proceedings of the fourth Asia-Pacific conference on simulated evolution and learning
[8] Chang BCH, Ratnaweera A, Halgamuge SK, Watson HC (2004) Particle swarm optimization for protein motif discovery. Genet Program Evolvable Mach 5:203–214 · Zbl 05660939 · doi:10.1023/B:GENP.0000023688.42515.92
[9] Chen Y, Dong J, Yang B, Zhang Y (2004) A local linear wavelet neural network. In: Proceedings of the fifth world congress on intelligent control and automation, Hangzhou, P.R. China, pp 1954–1957, 15–19 June 2004
[10] Chen A, Yang G, Wu Z (2006) Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem. J Zhejiang Univ Sci A 7(4):607–614 · Zbl 1166.90319 · doi:10.1631/jzus.2006.A0607
[11] Clerc M, Kennedy J (2002) The particle swarm: explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans Evol Comput 6:58–73
[12] Coello Coello CA, Lechuga MS (2002) MOPSO: a proposal for multiple objective particle swarm optimization, in congress on evolutionary computation (CEC’2002), vol 2, IEEE Service Center, Piscataway, New Jersey, pp 1051–1056, May 2002
[13] Conradie AVE, Miikkulainen R, Aldrich C (2002) Adaptive control utilising neural swarming. In: Proceedings of the genetic and evolutionary computation conference, New York, USA
[14] Das S, Konar A, Chakraborty UK (2005a) An efficient evolutionary algorithm applied to the design of two-dimensional IIR filters. In: GECCO 2005: proceedings of the 2005 conference on genetic and evolutionary computation, pp 2157–2163
[15] Das S, Konar A, Chakraborty UK (2005b) Improving particle swarm optimization with differentially perturbed velocity. In: GECCO 2005: proceedings of the 2005 conference on genetic and evolutionary computation, pp 177–184
[16] Eberhart RC, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the IEEE congress evolutionary computation, San Diego, CA, pp 84–88
[17] Eberhart RC, Simpson P, Dobbins R (1996) Computational intelligence PC tools, chap. 6. AP Professional, San Diego, CA, pp 212–226
[18] Foo YC, Chien SF, Low ALY, Teo CF (2005) New strategy for optimizing wavelength converter placement. Opt Express 13(2):545–551
[19] Gaing Z-L (2003) Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans Power Syst 18(3):1187–1195
[20] Georgiou VL, Pavlidis NG, Parsopoulos KE, Alevizos PhD, Vrahatis MN (2004) Optimizing the performance of probabilistic neural networks in a bioinformatics task. In: Proceedings of the EUNITE 2004 conference, pp 34–40
[21] Goudos SK, Sahalos JN (2006) Microwave absorber optimal design using multi-objective particle swarm optimization. Microwave Opt Technol Lett 48:1553–1558. Published online in Wiley InterScience ( http://www.interscience.wiley.com )
[22] Habibi J, Zonouz SA, Saneei M (2006) A hybrid PS-based optimization algorithm for solving traveling salesman problem. In: IEEE symposium on frontiers in networking with applications (FINA 2006), Vienna, Austria, 18–20 April 2006
[23] Higashi N, Iba H (2003) Particle swarm optimization with Gaussian mutation. In: Proceedings of the IEEE swarm intelligence symposium 2003 (SIS 2003), Indianapolis, Indiana, USA, pp 72–79
[24] Hsiao YT, Chuang CL, Jiang JA (2005) Particle swarm optimization approach for multiple biosequence alignment. In: Proceedings of the IEEE international workshop on genomic signal processing and statistics 2005, Rhode Island, USA, 22–24 May 2005
[25] Hu X, Eberhart RC (2002a) Multiobjective optimization using dynamic neighbourhood particle swarm optimization. In: Proceedings of the IEEE congress on evolutionary computation (CEC 2002), Honolulu, Hawaii, USA
[26] Hu X, Eberhart RC (2002b) Solving constrained nonlinear optimization problems with particle swarm optimization. In: Proceedings of the sixth world multiconference on systemics, cybernetics and informatics 2002 (SCI 2002), Orlando, USA
[27] Hu X, Eberhart RC, Shi Y (2003a) Particle swarm with extended memory for multiobjective optimization. In: IEEE swarm intelligence symposium 2003, Indianapolis, IN, USA
[28] Hu X, Eberhart RC, Shi Y (2003b) Engineering optimization with particle swarm. In: IEEE swarm intelligence symposium 2003, Indianapolis, IN, USA
[29] Ismail A, Engelbrecht AP (1999) Training product units in feedforward neural networks using particle swarm optimization. In: Proceedings of the international conference on artificial intelligence, Durban, South Africa, pp 36–40
[30] Jian M, Chen Y (2006) Introducing recombination with dynamic linkage discovery to particle swarm optimization. In: Proceedings of the genetic and evolutionary computation conference (GECCO2006), pp 85–86
[31] Jiménez JJ, Cedeño JR (2003) Application of particle swarm optimization for electric power system restoration. PowerCON 2003, Special Theme: BLACKOUT
[32] Juang C-F (2004) A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans Syst Man Cybern – Part B: Cybern 34(2):997–1006 · doi:10.1109/TSMCB.2003.818557
[33] Kannan S, Slochanal SMR, Subbaraj P, Padhy NP (2004) Application of particle swarm optimization technique and its variants to generation expansion planning problem. Elect Power Syst Res 70(3):203–210 · doi:10.1016/j.epsr.2003.12.009
[34] Karpat Y, Özel T (2006) Swarm-intelligent neural network system (SINNS) based multi-objective optimization of hard turning. Trans NAMRI/SME 34:179–186
[35] Kassabalidis IN, El-Sharkawi MA, Marks RJI, Moulin LS, Alves da Silva AP (2002) Dynamic security border identification using enhanced particle swarm optimization. IEEE Trans Power Syst 17(3):723–729 · doi:10.1109/TPWRS.2002.800942
[36] Kauffman S, Levin S (1987) Towards a general theory of adaptive walks on rugged landscapes. J Theor Biol 128:11–45 · doi:10.1016/S0022-5193(87)80029-2
[37] Kendall G, Su Y (2005) A particle swarm optimization approach in the construction of optimal risky portfolios. In: Proceedings of the 23rd IASTED international multi-conference artificial intelligence and applications, Innsbruck, Austria, pp 140–145, 14–16 Feb. 2005
[38] Kennedy J (1997) The particle swarm: social adaptation of knowledge. In: Proceedings of the international conference on evolutionary computation, IEEE, Piscataway, NJ, pp 303–308
[39] Kennedy J (2003) Bare bones particle swarms. In: Proceedings of the IEEE swarm intelligence symposium 2003 (SIS 2003), Indianapolis, Indiana, USA, pp 80–87
[40] Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, Piscataway, NJ, pp 1942–1948
[41] Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: Proceedings of the conference on systems, man and cybernetics, Piscataway, New Jersey, pp 4104–4109
[42] Khemka N, Jacob C, Cole G (2005) Making soccer kicks better: a study in particle swarm optimization. In: Proceedings genetic and evolutionary computation conference (GECCO2005), pp 382–385
[43] Ko PC, Lin PC (2004) A hybrid swarm intelligence based mechanism for earning forecast. In: Proceedings of the second international conference information technology for application
[44] Krink T, Løvbjerg M (2002) The lifecycle model: combining particle swarm optimization, genetic algorithms and hillclimbers. In: Proceedings of parallel problem solving from nature VII (PPSN 2002). Lecture notes in computer science (LNCS) no 2439, pp 621–630
[45] Li Y, Yao D, Yao J, Chen W (2005) A particle swarm optimization algorithm for beam angle selection in intensity-modulated radiotherapy planning. Phys Med Biol 50:3491–3514 · doi:10.1088/0031-9155/50/15/002
[46] Lin C-J, Hong S-J, Lee C-Y (2006) The design of neuro-fuzzy networks using particle swarm optimization and recursive singular value decomposition. In: 2006 International joint conference on neural networks, Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada, 16–21 July 2006
[47] Liu H, Abraham A (2005) Fuzzy adaptive turbulent particle swarm optimization. In: Proceedings of fifth international conference on hybrid intelligent systems (HIS’05), Rio de Janeiro, Brazil, 6–9 November 2005
[48] Lopes HS, Coelho LS (2005) Particle swarm optimization with fast local search for the blind travelling salesman problem. In: Proceedings of fifth international conference on hybrid intelligent systems (HIS’05), Rio de Janeiro, Brazil, 6–9 November 2005
[49] Løvbjerg M, Rasmussen TK, Krink T (2001) Hybrid particle swarm optimizer with breeding and subpopulations. In: Proceedings of the genetic and evolutionary computation conference (GECCO-2001)
[50] Lu H (2003) Dynamic population strategy assisted particle swarm optimization in multiobjective evolutionary algorithm design, 2003. IEEE Neural Network Society, IEEE NNS Student Research Grants 2002 – Final Reports
[51] Luna EH, Coello Coello CA, Aguirre AH (2004) On the use of a population-based particle swarm optimizer to design combinational logic circuits. In: Zebulum RS, Gwaltney D, Hornby G, Keymeulen D, Lohn J, Stoica A (eds) Proceedings of the 2004 NASA/DoD conference on evolvable hardware. IEEE Computer Society, Los Alamitos, California, pp 183–190, June 2004
[52] Mehran R, Fatehi A, Lucas C, Araabi BN (2006) Particle swarm extension to LOLIMOT. In: Proceedings of the sixth international conference on intelligent systems design and applications (ISDA’06)
[53] Mendes R, Cortez P, Rocha M, Neves J (2002) Particle swarms for feedforward neural network training. In: Proceedings of the 2002 international joint conference on neural networks (IJCNN 2002), pp 1895–1899
[54] Minsky M (1986) The society of mind. Simon and Schuster, New York
[55] Mostaghim S, Teich J (2003a) Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In: 2003 IEEE swarm intelligence symposium proceedings, IEEE Service Center, Indianapolis, Indiana, USA, pp 26–33, April 2003
[56] Mostaghim S, Teich J (2003b) The role of \(\epsilon\)-dominance in multi objective particle swarm optimization methods. In: Proceedings of the 2003 congress on evolutionary computation (CEC’2003), vol 3. IEEE Press, Canberra, Australia, pp 1764–1771, December 2003
[57] Naka S, Genji T, Yura T, Fukuyama Y (2003) A hybrid particle swarm optimization for distribution state estimation. IEEE Trans Power Syst 18(1):60–68 · doi:10.1109/TPWRS.2002.807051
[58] Nenortaite J (2005) Computation improvement of stockmarket decision making model through the application of grid. Inf Technol Control 34(3):269–275
[59] Nenortaite J, Simutis R (2004) Stocks’ trading system based on the particle swarm optimization algorithm. In: Bubak M, van Albada GD, Sloot PMA, Dongarra JJ (eds) Workshop on computational methods in finance and insurance. Computational science – ICCS 2004: 4th international conference. Proceedings, Part IV, Kraków, Poland, 6–9 June 2004
[60] Omran MG, Engelbrecht AP, Salman A (2005) A color image quantization algorithm based on particle swarm optimization. Informatica 29:261–269 · Zbl 1082.68856
[61] Pang W, Wang K, Zhou C, Dong L (2004) Fuzzy discrete particle swarm optimization for traveling salesman problem. In: Proceedings of the fourth international conference on computer and information technology (CIT’04)
[62] Parsopoulos KE, Vrahatis MN (2002b) Particle swarm optimization method in multiobjective problems. In: Proceedings of the ACM symposium on applied computing (SAC 2002), pp 603–607
[63] Parsopoulos KE, Vrahatis MN (2002c) Particle swarm method for constrained optimization problems. In: Proceedings of the Euro-international symposium on computational intelligence 2002
[64] Parsopoulos KE, Vrahatis MN (2004) UPSO: a unified particle swarm optimization scheme. In: Proceedings of the international conference on computational method in science and engineering (ICCMSE 2004). Lecture series on computer and computational sciences. VSP International Science Publishers, Zeist, The Netherlands, pp 868–873
[65] Parsopoulos KE, Vrahatis MN (2006). Studying the performance of unified particle swarm optimization on the single machine total weighted tardiness problem. In: Sattar A, Kang BH (eds) AI 2006, LNAI 4304, Springer-Verlag, pp 1027–1031
[66] Parsopoulos KE, Tasoulis DK, Vrahatis MN (2004) Multiobjective optimization using parallel vector evaluated particle swarm optimization. In: Proceedings of the IASTED international conference on artificial intelligence and applications (AIA 2004), vol 2. ACTA Press, Innsbruck, Austria, pp 823–828, February 2004
[67] Poli R, Langdon WB, Holland O (2005) Extending particle swarm optimization via genetic programming. In: Keijzer M, Tettamanzi A, Collet P, van Hemert J, Tomassini M (eds) Proceedings of eighth European conference, EuroGP 2005. Lausanne, Switzerland, March 30–April 1 2005
[68] Potter MA, de Jong KA (1994) A cooperative coevolutionary approach to function optimization. In: Proceedings of the third conference on parallel problem solving from nature. Springer, Berlin, Germany, pp 249–257
[69] Robinson, Rahmat-Samii (2004) Particle swarm optimization in electromagnetics. IEEE Trans Anten Propagat 52(2):397–407 · Zbl 1368.78192
[70] Schaffer JD (1985) Multiple objective optimization with vector evaluated genetic algorithms. In: Genetic algorithms and their applications: proceedings of the first international conference on genetic algorithms, pp 93–100
[71] Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In: Proceedings of the IEEE international conference on evolutionary computation. IEEE Press, Piscataway, NJ, pp 69–73
[72] Sierra MR, Coello Coello CA (2005) Improving PSO-based multi-objective optimization using crowding, mutation and e-dominance. In: Coello Coello CA, Aguirre HA, Zitzler E (eds) Evolutionary multi-criterion optimization. Third International conference, EMO 2005. Lecture notes in computer science, vol 3410. Springer, Guanajuato, México, pp 505–519, March 2005 · Zbl 1109.68631
[73] Sugisaka M, Fan X (2005) An effective search method for neural network based face detection using particle swarm optimization. IEICE Trans Inf Syst E88-D(2):214
[74] Tasgetiren F, Sevkli M, Lian YC, Gencyilmaz G (2004) Particle swarm optimization algorithm for single machine weighted tardiness problem. In: Proceedings IEEE congress on evolutionary computation, pp 1412–1419
[75] Ting TO, Tao MVC, Loo CK, Ngu SS (2003) Solving unit commitment problem using hybrid particle swarm optimization. J Heurist 9(6):507–520 · Zbl 1046.90107 · doi:10.1023/B:HEUR.0000012449.84567.1a
[76] Ujjin S, Bentley PJ (2003) Particle swarm optimization recommender system. In: Proceedings of the IEEE swarm intelligence symposium 2003 (SIS 2003), Indianapolis, Indiana, USA, pp 124–131
[77] van den Bergh F (1999) Particle swarm weight initialization in multi-layer perceptron artificial neural networks. In: Bajic VB, Sha D (eds) Development and practice of artificial intelligence techniques. IAAMSAD, Durban, South Africa, pp 41–45
[78] van den Bergh F, Engelbrecht AP (2000)Cooperative learning in neural networks using particle swarm optimizers. South Afr Comput J (26):84–90
[79] van den Bergh F, Engelbrecht AP (2002) A new locally convergent particle swarm optimizer. In: Proceedings of the IEEE conference systems, man and cybernetics, Hammamet, Tunisia
[80] van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 3:225–239
[81] Voss MS (2003) Social programming using functional swarm optimization. In: Proceedings of the 2003 IEEE swarm intelligence symposium (SIS03). Purdue University, Indianapolis, Indiana, USA, 24–26 April 2003
[82] Voss MS, Feng X (2001) Emergent system identification using particle swarm optimization. In: Complex adaptive structures conference, Hutchinson Island, FL
[83] Voss MS, Feng X (2002) A new methodology for emergent system identification using particle swarm optimization (PSO) and the group method of data handling (GMDH). In: Proceedings 2002 genetic and evolutionary computation conference, New York, NY, 9–13 July
[84] Wachowiak MP, Smolikova R, Zheng Y, Zurada JM, Elmaghraby AS (2004) An approach to medical biomedical image registration utilizing particle swarm optimization. IEEE Trans Evol Comput 8(3):289–301 · Zbl 05452182 · doi:10.1109/TEVC.2004.826068
[85] Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82 · Zbl 05451863 · doi:10.1109/4235.585893
[86] Xiao X, Dow ER, Eberhart RC, Ben Miled Z, Oppelt RJ (2003) Gene clustering using self-organizing maps and particle swarm optimization. In: Proceedings of second IEEE international workshop on high performance computational biology, Nice, France
[87] Xiao-hua Z, Hong-yun M, Li-cheng J (2005) Intelligent particle swarm optimization in multiobjective optimization. In: 2005 IEEE congress on evolutionary computation (CEC’2005), vol 1. IEEE Service Center, Edinburgh, Scotland, pp 714–719, September 2005
[88] Yang SY, Wang M, Jiao LC (2004) A quantum particle swarm optimization. In: Proceedings of the 2004 IEEE congress on evolutionary computation
[89] Yen GG, Lu H (2002) Dynamic population size in multiobjective evolutionary algorithm. In: Proceedings 9th IEEE congress on evolutionary computation, pp 1648–1653
[90] Yoshida H, Kawata K, Fukuyama Y, Takayama S, Nakanishi Y (2001) A particle swarm optimization for reactive power and voltage control considering voltage security assessment. In: Proceedings of power engineering society winter meeting, p 498
[91] Zavala AEM, Diharce ERV, Aguirre AH (2005) Particle evolutionary swarm for design reliability optimization. In: Coello Coello CA, Aguirre AH, Zitzler E (eds) Evolutionary multi-criterion optimization. Third international conference, EMO 2005. Lecture notes in computer science, vol 3410. Springer, Guanajuato, México, pp 856–869, March 2005 · Zbl 1109.68624
[92] Zhang WJ, Xie XF (2003) DEPSO: hybrid particle swarm with differential evolution operator. In: IEEE interenational conference on systems, man and cybernetics (SMCC), Washington DC, USA, pp 3816–3821
[93] Zhang LB, Zhou CG, Liu XH, Ma ZQ, Liang YC (2003) Solving multi objective optimization problems using particle swarm optimization. In: Proceedings of the 2003 congress on evolutionary computation (CEC’2003), vol 4. IEEE Press, Canberra, Australia, pp 2400–2405, December 2003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.