×

zbMATH — the first resource for mathematics

Numerical solutions of the space-time fractional advection-dispersion equation. (English) Zbl 1148.76044
Summary: Fractional advection-dispersion equations are used in groundwater hydrologhy to model the transport of passive tracers carried by fluid flow in a porous medium. In this paper we present two reliable algorithms, the Adomian decomposition method and variational iteration method, to construct numerical solutions of the space-time fractional advection-dispersion equation in the form of a rabidly convergent series with easily computable components. The fractional derivatives are described in the Caputo sense. Some examples are given. Numerical results show that the two approaches are easy to implement and accurate when applied to space-time fractional advection-dispersion equations.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76M30 Variational methods applied to problems in fluid mechanics
76R99 Diffusion and convection
76S05 Flows in porous media; filtration; seepage
86A05 Hydrology, hydrography, oceanography
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] He, International Conference on Vibrating Engineering’98 pp 288– (1998)
[2] He, Some applications of nonlinear fractional differential equations and their approximations, Bull Sci Technol 15 pp 86– (1999)
[3] He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput Methods Appl Mech Eng 167 pp 57– (1998) · Zbl 0942.76077
[4] Podlubny, Fractional differential equations (1999)
[5] Mainardi, Fractals and fractional calculus in continuum mechanics pp 291– (1997) · Zbl 0917.73004 · doi:10.1007/978-3-7091-2664-6_7
[6] Benson, Application of a fractional advection-dispersion equation, Water Resources Res 36 pp 1403– (2000)
[7] Liu, Time fractional advection-dispersion equation, J Appl Math Comput 13 pp 233– (2003) · Zbl 1068.26006
[8] Huang, The fundamental solution of the space-time fractional advection-dispersion equation, J Appl Math Computing 18 pp 339– (2005) · Zbl 1086.35003
[9] Adomian, A review of the decomposition method in applied mathematics, J Math Anal Appl 135 pp 501– (1988) · Zbl 0671.34053
[10] Adomian, Solving frontier problems of physics: the decomposition method (1994) · Zbl 0802.65122 · doi:10.1007/978-94-015-8289-6
[11] He, Variational iteration method for delay differential equations, Commun Nonlinear Sci Numer Simulat 2 pp 235– (1997) · Zbl 0924.34063
[12] He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput Methods Appl Mech Eng 167 pp 57– (1998) · Zbl 0942.76077
[13] He, Approximate solution of non linear differential equations with convolution product nonlinearities, Comput Methods Appl Mech Eng 167 pp 69– (1998) · Zbl 0932.65143
[14] He, Variational iteration method- a kind of non-linear analytical technique: some examples, Int J Nonlinear Mech 34 pp 699– (1999) · Zbl 1342.34005
[15] He, Variational iteration method for autonomous ordinary differential systems, Appl Math Comput 114 pp 115– (2000) · Zbl 1027.34009
[16] He, An iteration formulation for normalized diode characteristics, Int J Circuit Theory Appl 32 pp 629– (2004) · Zbl 1169.94352
[17] Shawagfeh, Comparing numerical methods for the solutions of systems of ordinary differential equations, Appl Math Lett 17 pp 323– (2004) · Zbl 1061.65062
[18] Al-Khaled, An approximate solution for a fractional diffusion-wave equation using the decomposition method, Appl Math Comput 165 pp 473– (2005) · Zbl 1071.65135
[19] Momani, Analytic and approximate solutions of the space- and time-fractional telegraph equations, Appl Math Comput 170 pp 1126– (2005) · Zbl 1103.65335
[20] Momani, An explicit and numerical solutions of the fractional KdV equation, Math Comput Simul 70 pp 110– (2005) · Zbl 1119.65394
[21] Momani, Non-perturbative analytical solutions of the space- and time-fractional Burgers equations, Chaos, Solitons Fractals 28 pp 930– (2006) · Zbl 1099.35118
[22] Momani, Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method, Appl Math Comput 177 pp 488– (2006) · Zbl 1096.65131
[23] Marinca, An approximate solution for one-dimensional weakly nonlinear oscillations, Int J Nonlinear Sci Numer Simulat 3 pp 107– (2002) · Zbl 1079.34028 · doi:10.1515/IJNSNS.2002.3.2.107
[24] Drǎ;gǎ;nescu, Nonlinear relaxation phenomena in polycrystalline solids, Int J Nonlinear Sci Numer Simulat 4 pp 219– (2003)
[25] Liu, Generalized variational principles for ion acoustic plasma waves by He’s semi-inverse method, Chaos Solitons Fractals 23 pp 573– (2005) · Zbl 1135.76597
[26] Hao, Search for variational principles in electrodynamics by Lagrange method, Int J Nonlinear Sci Numer Simulat 6 pp 209– (2005) · Zbl 1401.78004 · doi:10.1515/IJNSNS.2005.6.2.209
[27] Momani, Application of He’s variational iteration method to Helmholtz equation, Chaos Solitons Fractals 27 pp 1119– (2006) · Zbl 1086.65113
[28] Odibat, Application of variational iteration method to nonlinear differential equations of fractional order, Int J Nonlinear Sci Numer Simulat 7 pp 27– (2006) · Zbl 1401.65087 · doi:10.1515/IJNSNS.2006.7.1.27
[29] Momani, Numerical comparison of methods for solving linear differential equations of fractional order, Chaos Solitons Fractals 31 pp 1248– (2007) · Zbl 1137.65450
[30] Luchko, Preprint series A08 - 98, Fachbreich Mathematik und Informatik (1998)
[31] Miller, An introduction to the fractional calculus and fractional differential equations (1993) · Zbl 0789.26002
[32] Oldham, The fractional calculus (1974) · Zbl 0206.46601
[33] Caputo, Linear models of dissipation whose Q is almost frequency independent, Part II, J Roy Astr Soc 13 pp 529– (1967) · doi:10.1111/j.1365-246X.1967.tb02303.x
[34] Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract Calculus Appl Anal 5 pp 367– (2002) · Zbl 1042.26003
[35] Cherruault, Convergence of Adomian’s method, Kybernetes 18 pp 31– (1989) · Zbl 0697.65051
[36] Cherruault, Decomposition methods: a new proof of convergence, Math Comput Modelling 18 pp 103– (1993) · Zbl 0805.65057
[37] Inokuti, Variational method in the mechanics of solids pp 156– (1978)
[38] He, Variational theory for linear magneto-electro-elasticity, Int J Nonlinear Sci Numer Simulat 2 pp 309– (2001) · Zbl 1083.74526 · doi:10.1515/IJNSNS.2001.2.4.309
[39] He, Variational principle for Nano thin film lubrication, Int J Nonlinear Sci Numer Simulat 4 pp 313– (2003) · Zbl 06942026 · doi:10.1515/IJNSNS.2003.4.3.313
[40] He, Variational principle for some nonlinear partial differential equations with variable coefficients, Chaos Solitons Fractals 19 pp 847– (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.