×

zbMATH — the first resource for mathematics

Mixed model prediction and small area estimation. (With comments of P. Hall, D. Morales, C. N. Morris, J. N. K. Rao, and J. L. Eltinge). (English) Zbl 1149.62320
Summary: Over the last three decades, mixed models have been frequently used in a wide range of small area applications. Such models offer great flexibilities in combining information from various sources, and thus are well suited for solving most small area estimation problems. The present article reviews major research developments in the classical inferential approach for linear and generalized linear mixed models that are relevant to different issues concerning small area estimation and related problems.

MSC:
62J12 Generalized linear models (logistic models)
62F10 Point estimation
62C12 Empirical decision procedures; empirical Bayes procedures
62F40 Bootstrap, jackknife and other resampling methods
62D05 Sampling theory, sample surveys
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arora, V.; Lahiri, P.; Mukherjee, K., Empirical Bayes estimation of finite population means from complex surveys, Journal of the American Statistical Association, 92, 1555-1562, (1997) · Zbl 0912.62012
[2] Barndorff-Nielsen, O., On a formula for the distribution of the maximum likelihood estimator, Biometrika, 70, 343-365, (1983) · Zbl 0532.62006
[3] Basu, R.; Ghosh, J. K.; Mukerjee, R., Empirical Bayes prediction intervals in a normal regression model: higher order asymptotics, Statistics & Probability Letters, 63, 197-203, (2003) · Zbl 1116.62305
[4] Battese, G. E.; Harter, R. M.; Fuller, W. A., An error-components model for prediction of county crop areas using survey and satellite data, Journal of the American Statistical Association, 80, 28-36, (1988)
[5] Beckman, R. J.; Nachtsheim, C. J.; Cook, R. D., Diagnostics for mixed-model analysis of variance, Technometrics, 29, 413-426, (1987) · Zbl 0632.62068
[6] Bell, W. (2001). Discussion with “Jackknife in the Fay-Herriott model with an example”. InProceeding of the Seminar on Funding Opportunity in Survey Research, pp. 98-104. · Zbl 1117.62389
[7] Booth, J. G.; Hobert, J. P., Standard errors of predictors in generalized linear mixed models, Journal of the American Statistical Association, 93, 262-272, (1998) · Zbl 1068.62516
[8] Booth, J. G.; Hobert, J. P., Maximum generalized linear mixed model likelihood with an automated Monte Carlo EM algorithm, Journal of the Royal Statistical Society. Series B, 61, 265-285, (1999) · Zbl 0917.62058
[9] Brackstone, G. J.; Platek, R. (ed.); Rao, J. N. K. (ed.); Sarndal, C. E. (ed.); Singh, M. P. (ed.), Small area data: policy issues and technical challenges, 3-20, (1987), New York
[10] Breslow, N. E.; Clayton, D. G., Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88, 9-25, (1993) · Zbl 0775.62195
[11] Butar, F. B. (1997).Empirical Bayes Methods in Survey Sampling. PhD Thesis, Dept. of Mathematics and Statistics, University of Nebraska-Lincoln.
[12] Butar, F. B.; Lahiri, P., On measures of uncertainty of empirical Bayes small area estimators. model selection, model diagnostics, empirical Bayes and hierarchical Bayes, special issue II (lincoln, NE, 1999), Journal of Statistical Planning and Inference, 112, 63-76, (2003) · Zbl 1033.62007
[13] Calvin, J. A.; Sedransk, J., Bayesian and frequentist predictive inference for the patterns of care studies, Journal of the American Statistical Association, 86, 36-48, (1991)
[14] Carlin, B. P.; Gelfand, A., Approaches for empirical Bayes confidence intervals, Journal of the American Statistical Association, 85, 105-114, (1990) · Zbl 0731.62080
[15] Carlin, B. P.; Gelfand, A., A sample reuse method for accurate parametric empirical Bayes confidence intervals, Journal of the Royal Statistical Society. Series B, 53, 189-200, (1991) · Zbl 0800.62183
[16] Carlin, B. P., andLouis, T. A. (1996).Bayes and Empirical Bayes Methods for Data Analysis. Chapman and Hall, London. · Zbl 0871.62012
[17] Carter, G. M.; Rolph, J. E., Empirical Bayes methods applied to estimating fire alarm probabilities, Journal of the American Statistical Association, 69, 880-885, (1974)
[18] Chatterjee, S. andLahiri, P. (2002). Parametric bootstrap confidence interval in small area estimation problems. Unpublished manuscript.
[19] Chaudhuri, A., Small domain statistics: a review, Statistica Neerlandica, 48, 215-236, (1994) · Zbl 0828.62010
[20] Chen, S. andLahiri, P. (2002). A weighted jackknife MSPE estimator in small area estimation. InProceedings of the Survey Research Methods Section, pp. 473-477. American Statistical Association. · Zbl 0275.62005
[21] Chen, S. andLahiri, P. (2003a). A comparison of different MSPE estimators of EBLUP for the Fay-Herriot model. InProceedings of the Survey Research Methods Section, pp. 905-911. American Statistical Association. · Zbl 0910.62026
[22] Chen, S. andLahiri, P. (2003b). Jackknifing the mean square prediction error of EBLUP for the Fay-Herriot model. Unpublished manuscript. · Zbl 0775.90106
[23] Chen, S. andLahiri, P. (2005). On mean squared prediction error estimation in small area estimation problems. InProceedings of the Survey Research Methods Section. American Statistical Association. To appear.
[24] Chen, S., Lahiri, P., andRao, J. N. K. (2005). On mean square prediction error estimation for a non-normal Fay-Herriot model. Unpublished manuscript.
[25] Christensen, R.; Pearson, L. M.; Johnson, W., Case-deletion diagnostics for mixed models, Technometrics, 34, 38-45, (1992) · Zbl 0761.62098
[26] Christiansen, C. L. andMorris, C. N. (1994). README document, June 7, 1994, a seven-page latex tutorial for PRIMM. Available through StatLib, stat@lib.stat.cmu.edu.
[27] Christiansen, C. L.; Morris, C. N.; Berry, D. (ed.); Stangl, D. (ed.), Hierarchical Poisson regression modeling, 467-501, (2006), New York
[28] Christiansen, C. L.; Morris, C. N., Hierarchical Poisson regression modeling, Journal of the American Statistical Association, 92, 618-632, (1997) · Zbl 0889.62074
[29] Citro, C. F., Cohen, M. L., Kalton, G., andWest, K. K. (1997).Small-area estimates of school-age children in poverty: Interim report I-evaluation of 1993 county estimates for title I allocation. National Academy Press, Washington.
[30] Cox, D. R.; Gani, J. (ed.), Prediction intervals and empirical Bayes confidence intervals, 47-55, (1975), Washington · Zbl 0356.62028
[31] Crouch, E. A. C.; Spiegelman, D., The evaluation of integrals of the form ∫f(t)exp(−\(t\)\^{}{2})dt: application to logistic normal models, Journal of the American Statistical Association, 85, 464-469, (1990) · Zbl 0716.65137
[32] Das, K.; Jiang, J.; Rao, J. N. K., Mean squared error of empirical predictor, The Annals of Statistics, 32, 818-840, (2004) · Zbl 1092.62063
[33] Datta, G. S.; Ghosh, M., Bayesian prediction in linear models: applications to small area estimation, The Annals of Statistics, 19, 1746-1770, (1991) · Zbl 0738.62030
[34] Datta, G. S.; Ghosh, M.; Smith, D. D.; Lahiri, P., On an asymptotic theory of conditional and unconditional coverage probabilities of empirical Bayes confidence intervals, Scandinavian Journal of Statistics, 29, 139-152, (2002) · Zbl 1017.62008
[35] Datta, G. S.; Lahiri, P., A unified measure of uncertainty of estimated best linear unbiased predictors in small area estimation problems, Statistica Sinica, 10, 613-627, (2000) · Zbl 1054.62566
[36] Datta, G. S. andLahiri, P. (2001). Discussions on a paper by Efron and Gous. InModel Selection, Vol. 38 ofIMS Lecture Notes/Monograph.
[37] Datta, G. S.; Rao, J. N. K.; Smith, D. D., On measuring the variability of small area estimators under a basic area level model, Biometrika, 92, 183-196, (2005) · Zbl 1068.62027
[38] Dempster, A. P.; Ryan, L. M., Weighted normal plots, Journal of the American Statistical Association, 80, 845-850, (1985)
[39] Diggle, P. J., Liang, K. Y., andZeger, S. L. (1996).Analysis of Longitudinal Data. Oxford University Press, Oxford. · Zbl 1031.62002
[40] Efron, B., Biased versus unbiased estimation, Advances in Mathematics, 16, 259-277, (1975) · Zbl 0306.62010
[41] Efron, B.; Morris, C. N., Limiting the risk of Bayes and empirical Bayes estimators. part II: the empirical Bayes case, Journal of the American Statistical Association, 67, 130-139, (1972) · Zbl 0231.62013
[42] Efron, B.; Morris, C. N., Stein’s estimation rule and its competitors—an empirical Bayes approach, Journal of the American Statistical Association, 68, 117-130, (1973) · Zbl 0275.62005
[43] Efron, B.; Morris, C. N., Data analysis using Stein’s estimator and its generalizations, Journal of the American Statistical Association, 70, 311-319, (1975) · Zbl 0319.62018
[44] Fabrizi, E. andLahiri, P. (2004). A new approximation to the Bayes information criterion in finite population sampling. Unpublished manuscript. · Zbl 0955.62500
[45] Fay, R. E.; Herriot, R. A., Estimates of income for small places: an application of James-Stein procedures to census data, Journal of the American Statistical Association, 74, 269-277, (1979)
[46] Fuller, W. A., Prediction of true values for the measurement error model, Contemporary Mathematics, 112, 41-57, (1990)
[47] Gelman, A., Carlin, J. B., Stern, H. S., andRubin, D. B. (1995).Bayesian Data Analysis. Chapman and Hall, London. · Zbl 1279.62004
[48] Gershunskaya, J. B. andLahiri, P. (2005). Variance estimation for domains in the U.S. Current Employment Statistics Program. InProceedings of the Survey Research Methods Section. American Statistical Association. To appear. · Zbl 0373.62040
[49] Ghosh, M.; Lahiri, P., Robust empirical Bayes estimation of means from stratified samples, Journal of the American Statistical Association, 82, 1153-1162, (1987) · Zbl 0641.62006
[50] Ghosh, M.; Lahiri, P., A hierarchical Bayes approach to small area estimation with auxiliary information (with discussion), 107-125, (1992), Berlin · Zbl 0767.62004
[51] Ghosh, M.; Meeden, G., Empirical Bayes estimation in finite population sampling, Journal of the American Statistical Association, 81, 1058-1062, (1986) · Zbl 0616.62012
[52] Ghosh, M. andMeeden, G. (1997).Bayesian Methods for Finite Population Sampling. Chapman and Hall, London. · Zbl 0894.62012
[53] Ghosh, M.; Natarajan, K.; Stroud, T. W. F.; Carlin, B. P., Generalized linear models for small-area estimation, Journal of the American Statistical Association, 93, 273-282, (1998) · Zbl 0906.62068
[54] Ghosh, M.; Rao, J. N. K., Small area estimation: an appraisal (with discussion), Statistical Science, 9, 55-93, (1994) · Zbl 0955.62538
[55] Glickman, H. andPfeffermann, D. (2004). Mean square error approximation in small area estimation by use of parametric and nonparametric bootstrap. InProceedings of the Survey Research Methods Section. American Statistical Association. To appear. · Zbl 0228.62046
[56] Goldstein, H., Multilevel mixed linear model analysis using iterative generalised least squares, Biometrika, 73, 43-56, (1986) · Zbl 0587.62143
[57] Hartley, H. O; Rao, J. N. K., Maximum likelihood estimation for the mixed analysis of variance model, Biometrika, 54, 93-108, (1967) · Zbl 0178.22001
[58] Harville, D. A., Bayesian inference for variance components using only error contrasts, Biometrika, 61, 383-385, (1974) · Zbl 0281.62072
[59] Harville, D. A., Maximum likelihood approaches to variance components estimation and related problems, Journal of the American Statistical Association, 72, 320-340, (1977) · Zbl 0373.62040
[60] Harville, D. A.; Gianola, D. (ed.); Hammond, K. (ed.), BLUP (best linear unbiased prediction) and beyond, 239-276, (1990), New York
[61] Harville, D. A., Comment on Robinson: estimation of random effects, Statistical Science, 6, 35-39, (1991)
[62] Henderson, C. R. (1948).Estimation of general specific and maternal combining abilities in crosses among inbred lines of swine. PhD Thesis, Iowa State University, Ames, Iowa.
[63] Henderson, C. R., Estimation of genetic parameters (abstract), The Annals of Mathematical Statistics, 21, 309-310, (1950)
[64] Henderson, C. R., Estimation of variance and covariance components, Biometrics, 9, 226-252, (1953)
[65] Henderson, C. R., Sire evaluation and genetic trends, 10-41, (1973), Champaign, IL
[66] Henderson, C. R.; Kempthorne, O.; Searle, S. R.; Krosigk, C. N., Estimation of environmental and genetic trends from records subject to culling, Biometrics, 15, 192-218, (1959) · Zbl 0128.40301
[67] Heyde, C. C., A quasi-likelihood approach to the REML estimating equations, Statistics & Probability Letters, 21, 381-384, (1994) · Zbl 0805.62056
[68] Heyde, C. C. (1997).Quasi-Likelihood and Its Application. Springer-Verlag, New York. · Zbl 0879.62076
[69] Hill, J. R., A general framework for model-based statistics, Biometrika, 77, 115-26, (1990) · Zbl 0692.62003
[70] Hinde, J.; Gilchrist, R. (ed.), Compound Poisson regression models, 109-121, (1982), Berlin
[71] Hinrichs, P. E. (2003).Consumer expenditure estimation incorporating generalized variance functions in hierarchical Bayes models. PhD Thesis, University of Nebraska-Lincoln. · Zbl 0800.62139
[72] Ireland, C. T.; Kullback, S., Contingency tables with given marginals, Biometrika, 55, 179-188, (1968) · Zbl 0155.26701
[73] Isaki, C. T.; Fuller, W. A., Survey design under the regression superpopulation model, Journal of the American Statistical Association, 77, 89-96, (1982) · Zbl 0511.62016
[74] Jeske, D. R.; Harville, D. A., Predictions-interval procedures and (fixed-effects) confidence-interval procedures for mixed linear models, Communications in Statistics. Theory and Methods, 17, 1053-1087, (1988) · Zbl 0648.62073
[75] Jiang, J., REML estimation: asymptotic behaviors and related topics, The Annals of Statistics, 24, 255-286, (2006) · Zbl 0853.62022
[76] Jiang, J., A derivation of BLUP—best linear unbiased predictor, Statistics & Probability Letters, 32, 321-324, (1997) · Zbl 0886.62066
[77] Jiang, J., Wald consistency and the method of sieves in REML estimation, The Annals of Statistics, 25, 1781-1803, (1997) · Zbl 0890.62020
[78] Jiang, J., Asymptotic properties of the empirical BLUP and BLUE in mixed linear models, Statistica Sinica, 8, 861-885, (1998) · Zbl 0901.62038
[79] Jiang, J., Consistent estimators in generalized linear mixed models, Journal of the American Statistical Association, 93, 720-729, (1998) · Zbl 0926.62051
[80] Jiang, J., Conditional inference about generalize linear mixed models, The Annals of Statistics, 27, 1974-2007, (1999) · Zbl 0961.62062
[81] Jiang, J., A matrix inequality and its statistical applications, Linear Algebra and its Applications, 307, 131-144, (2000) · Zbl 0993.15022
[82] Jiang, J., A nonlinear Gauss-Seidel algorithm for inference about GLMM, Computational Statistics, 15, 229-241, (2000) · Zbl 0974.62054
[83] Jiang, J., Goodness-of-fit tests for mixed model diagnostics, The Annals of Statistics, 29, 1137-1164, (2001) · Zbl 1041.62062
[84] Jiang, J., Empirical best prediction for small area inference based on generalized linear mixed models, Journal of Statistical Planning and Inference, 111, 117-127, (2003) · Zbl 1033.62067
[85] Jiang, J. (2006a). Comment on Song, Fan and Kalbfleisch: Maximization by parts in likelihood inference.Journal of the American Statistical Association. In press.
[86] Jiang, J. (2006b). Linear and generalized linear mixed models and their applications. Springer-Verlag, working monograph. · Zbl 0813.62064
[87] Jiang, J. (2006c). Partially observed information and inference about non-Gaussian mixed linear models.The Annals of Statistics. In press.
[88] Jiang, J.; Jia, H.; Chen, H., Maximum posterior estimation of random effects in generalized linear mixed models, Statistica Sinica, 11, 97-120, (2001) · Zbl 0967.62046
[89] Jiang, J.; Lahiri, P., Empirical best prediction for small area inference with binary data, Annals of the Institute of Statistical Mathematics, 53, 217-243, (2001) · Zbl 1027.62012
[90] Jiang, J. andLahiri, P. (2006). Estimation of finite population domain means-a model assisted empiricals best prediction approach. Journal of the American Statistical Association. In press. · Zbl 1118.62303
[91] Jiang, J.; Lahiri, P.; Wan, S., A unified jackknife theory for empirical best prediction with M-estimation, The Annals of Statistics, 30, 1782-1810, (2002) · Zbl 1020.62025
[92] Jiang, J.; Lahiri, P.; Wu, C. H., A generalization of Pearson’s χ\^{}{2} goodness-of-fit test with estimated cell frequencies, Sankhyā Series A, 63, 260-276, (2001) · Zbl 0995.62048
[93] Jiang, J.; Rao, J. S., Consistent procedures for mixed linear model selection, Sankhyā. Series A, 65, 23-42, (2003) · Zbl 1193.62112
[94] Jiang, J.; Zhang, W., Robust estimation in generalized linear mixed models, Biometrika, 88, 753-765, (2001) · Zbl 0985.62054
[95] Jiang, J.; Zhang, W., Distribution-free prediction intervals in mixed linear models, Statistica Sinica, 12, 537-553, (2002) · Zbl 0998.62040
[96] Juan-Albacea, Z. V. (2004). Small area estimation of sub-national poverty incidence. InProceeding of the ADB-GTZ-CEPA Regional Conference on Poverty Monitoring. Manila, Philippines. · Zbl 0995.62048
[97] Kackar, R. N.; Harville, D. A., Unbiasedness of two-stage estimation and prediction procedures for mixed linear models, Communications in Statistics. Theory and Methods, 10, 1249-1261, (1981) · Zbl 0473.62055
[98] Kackar, R. N.; Harville, D. A., Approximations for standard errors of estimators of fixed and random effects in mixed linear models, Journal of the American Statistical Association, 79, 853-862, (1984) · Zbl 0557.62066
[99] Khuri, A. I.; Sahai, H., Variance components analysis: a selective literature survey, International Statistical Review, 53, 279-300, (1985) · Zbl 0586.62110
[100] Kleffe, J.; Rao, J. N. K., Estimation of Mean square error of empirical best linear unbiased predictors under a random error variance linear model, Journal of Multivariate Analysis, 43, 1-15, (1992) · Zbl 0754.62049
[101] Kott, P., Robust small domain estimation using random effects modelling, Survey Methodology, 15, 3-12, (1989)
[102] Kuk, A. Y. C., Asymptotically unbiased estimation in generalized linear models with random effects, Journal of the Royal Statistical Society. Series B, 57, 395-407, (1995) · Zbl 0813.62064
[103] Lahiri, P. (1995). A jaccknife measure of uncertainty of linear empirical Bayes estimators. Unpublished manuscript.
[104] Lahiri, P. (2001).Model Selection, Vol. 38, ofIMS Lecture Notes-Monograph Series. Institute of Mathematical Statistics, Beachwood, Ohio. · Zbl 1029.00034
[105] Lahiri, P., On the impact of bootstrap in sarvey sampling and small area estimation, Statistical Science, 18, 199-210, (2003) · Zbl 1331.62076
[106] Lahiri, P., A review of empirical best linear unbiased prediction for the fay-herriot small-area model, The Philippine Statistician, 52, 1-15, (2003)
[107] Lahiri, P. andLi, H. (2005). A fresh look at baseball data analysis. Unpublished report. · Zbl 0890.62020
[108] Lahiri, P.; Maiti, T., Empirical Bayes estimation of relative risks in disease mapping, Calcutta Statistical Associations Bulletin, 53, 211-212, (2002) · Zbl 1073.62101
[109] Lahiri, P.; Meza, J. L.; El-Shaarawi, A. H. (ed.); Piegorsch, W. W. (ed.), Small-area estimation, 2010-2014, (2002), Chichester
[110] Lahiri, P.; Rao, J. N. K., Robust estimation of Mean squared error of small area estimators, Journal of the American Statistical Association, 90, 758-766, (1995) · Zbl 0826.62008
[111] Laird, N. M.; Louis, T. A., Empirical Bayes confidence intervals based on bootstrap samples, Journal of the American Statistical Association, 82, 739-757, (1987) · Zbl 0643.62018
[112] Lange, N.; Ryan, L., Assessing normality in random effects models, The Annals of Statistics, 17, 624-642, (1989) · Zbl 0672.62081
[113] Lee, Y.; Nelder, J. A., Hierarchical generalized linear models iwith discussion), Journal of the Royal Statistical Society. Series B, 58, 619-678, (2006) · Zbl 0880.62076
[114] Li, H. (2005). Comparison of different small area estimators for complex survey data. Unpublished manuscript. · Zbl 0961.62062
[115] Liang, K. Y.; Zeger, S. L., Longitudinal data analysis using generalized linear models, Biometrika, 73, 13-22, (1986) · Zbl 0595.62110
[116] Lin, X.; Breslow, N. E., Bias correction in generalized linear mixed models with multiple components of dispersion, Journal of the American Statistical Association, 91, 1007-1016, (2006) · Zbl 0882.62059
[117] Malec, D.; Sedransk, J.; Moriarity, C. L.; LeClere, F. B., Small area inference for binary variables in the national health interview survey, Journal of the American Statistical Association, 92, 815-826, (1997) · Zbl 0889.62005
[118] Marker, D. A., Organization of small area estimators using generalized regression framework, Journal of Official Statistics, 15, 1-24, (1999)
[119] Marshall, R. J., A review of methods for the statistical analysis of spatial patterns of disease, Journal of the Royal Statistical Society. Series A, 154, 421-441, (1991) · Zbl 1002.62512
[120] McCullagh, P. andNelder, J. A. (1989).Generalized Linear Models. Chapman and Hall, London, 2nd ed. · Zbl 0744.62098
[121] McCulloch, C. E., Maximum likelihood variance components estimation for binary data, Journal of the American Statistical Association, 89, 330-335, (1994) · Zbl 0800.62139
[122] McCulloch, C. E., Maximum likelihood algorithms for generalized linear mixed models, Journal of the American Statistical Association, 92, 162-170, (1997) · Zbl 0889.62061
[123] McGilchrist, C. A., Estimation in generalized mixed models, Journal of the Royal Statistical Society. Series B, 56, 61-69, (1994) · Zbl 0800.62433
[124] Meza, J. L., Empirical Bayes estimation smoothing of relative risk in disease mapping, Journal of Statistical Planning and Inference, 112, 43-62, (2003) · Zbl 1024.62046
[125] Meza, J. L., Chen, S., andLahiri, P. (2003). Estimation of lifetime alcohol abuse for Nebraska counties. Unpublished manuscript. · Zbl 1023.62059
[126] Meza, J. L.; Lahiri, P., A note on the cp statistic under the nested error regression model, Survey Methodology, 31, 105-109, (2005)
[127] Miller, J. J., Asymptotic properties of maximum likelihood estimates in the mixed model of analysis of variance, The Annals of Statistics, 5, 746-762, (1977) · Zbl 0406.62017
[128] Morris, C. N., Parametric empirical Bayes confidence intervals, 25-50, (1983), New York · Zbl 0581.62033
[129] Morris, C. N., Parametric empirical Bayes inference: theory and applications, Journal of the American Statistical Association, 78, 47-59, (1983) · Zbl 0506.62005
[130] Mukhopadhyay, P. (1998).Small Area Estimation in Survey Sampling. Narosa Publishing House, New Delhi. · Zbl 0916.62011
[131] Nandram, B., An empirical Bayes prediction interval for the finite population Mean of a small area, Statistica Sinica, 9, 325-343, (1999) · Zbl 0930.62002
[132] Nandram, B.; Sedransk, J., Empirical Bayes estimation for the finite population Mean on the current occasion, Journal of the American Statistical Association, 88, 994-1000, (1993) · Zbl 0783.62010
[133] Natarajan, R.; McCulloch, C. E., A note on the existence of the posterior distribution for a class of mixed models for binomial responses, Biometrika, 82, 639-643, (1995) · Zbl 0830.62031
[134] National Research Council (2000).Small-Area Estimates of School-Age Children in Poverty: Evaluation of Current Methodology. National Academic Press, Washington.
[135] Neyman, J.; Scott, E., Consistent estimates based on partially consistent observations, Econometrika, 16, 1-32, (1948) · Zbl 0034.07602
[136] Patterson, H. D.; Thompson, R., Recovery of interblock information when block sizes are unequal, Biometrika, 58, 545-554, (1971) · Zbl 0228.62046
[137] Pfeffermann, D., On extensions of the Gauss-Markov theorem to the case of stochastic regression coefficient, Journal of the Royal Statistical Society, Series B, 46, 139-148, (1984) · Zbl 0546.62038
[138] Pfeffermann, D., Small area estimation-new developments and directions, International Statistical Review, 70, 125-143, (2002) · Zbl 1211.62022
[139] Pfeffermann, D. andTiller, R. (2002). Bootstrap approximation to prediction MSE for state-space models with estimated parameters. Technical Report, U.S. Bureau of Labor Statistics. · Zbl 1097.62086
[140] Pinheiro, J. C. andBates, D. M. (2000).Mixed-Effects Models in S and S-Plus. Springer-Verlag, New York, 2nd ed. · Zbl 0953.62065
[141] Prasad, N. G. N.; Rao, J. N. K., The estimation of Mean squared errors of small area estimators, Journal of the American Statistical Association, 85, 163-171, (1990) · Zbl 0719.62064
[142] Prasad, N. G. N.; Rao, J. N. K., On robust small area estimation using a simple random effects model, Survey Methodology, 25, 67-72, (1999)
[143] Prentice, R. L., Correlated binary regression with covariates specific to each binary observation, Biometrics, 44, 1033-1048, (1988) · Zbl 0715.62145
[144] Rao, C. R., Estimation of variance and covariance components in linear models, Journal of the American Statistical Association, 67, 112-115, (1972) · Zbl 0231.62082
[145] Rao, J. N. K., Synthetic estimators, SPREE and the best model based predictors, 1-16, (1986), Washington, D.C.
[146] Rao, J. N. K., Some recent advances in model-based small area estimation, Survey Methodology, 25, 175-186, (1999)
[147] Rao, J. N. K.; Ahmed, S. E. (ed.); Reid, N. (ed.), EB and EBLUP in small area estimation, 33-43, (2001), New York
[148] Rao, J. N. K. (2003).Small Area Estimation. John Wiley & Sons, New York. · Zbl 1026.62003
[149] Richardson, A. M.; Welsh, A. H., Asymptotic properties of restricted maximum likelihood (REML) estimates for hierarchical mixed linear models, Australian Journal of Statistics, 36, 31-43, (1994) · Zbl 0828.62025
[150] Rivest, L. P. andBelmonte, E. (1999). The conditional mean square errors of small area estimators in survey sampling. Technical Report, Laval University. · Zbl 0738.62030
[151] Robinson, D. L., Estimation and use of variance components, Journal of the Royal Statistical Society. Series D. The Statistician, 36, 3-14, (1987)
[152] Robinson, G. K., That BLUP is a good thing: the estimation of random effects (with discussion), Statistical Science, 6, 15-51, (1991) · Zbl 0955.62500
[153] Schall, R., Estimation in generalized linear models with random effects, Biometrika, 78, 719-727, (1991) · Zbl 0850.62561
[154] Searle, S. R., Casella, G., andMcCulloch, C. E. (1992).Variance Components. John Wiley & Sons, New York. · Zbl 1108.62064
[155] Shaw, R. G., Maximum-likelihood approaches applied to quantitative genetics of natural populations, Evolution, 41, 812-826, (1987)
[156] Singh, A. C.; Stukel, D. M.; Pfeffermann, D., Bayesian versus frequentist measures of error in small area estimation, Journal of the Royal Statistical Society. Series B, 60, 377-396, (1998) · Zbl 0910.62026
[157] Song, P. X.-K.; Fan, Y.; Kalbfleisch, J. D., Maximization by parts in likelihood inference (with discussion), Journal of the American Statistical Association, 100, 1145-1158, (2005) · Zbl 1117.62429
[158] Speed, T. P.; Kotz, S. (ed.); Read, C. B. (ed.); Banks, D. L. (ed.), Restricted maximum likelihood (REML), 472-481, (1997), New York
[159] Särndal, C. E., Design-consistent versus model-dependent estimators for small domainss, Journal of the American Statistical Association, 79, 624-6315, (1984) · Zbl 0557.62008
[160] Tabunda, A. M. L.; Abanilla, J. R. Y., A look at EBLUP and other small area estimates of poverty incidence at the city/municipality level, 73-97, (1997), Quezon City, Philippines
[161] Thompson, J., W. A., The problem of negative estimates of variance components, Annals of Mathematical Statistics, 33, 273-289, (1962) · Zbl 0108.15902
[162] Verbyla, A. P., A conditional derivation of residual maximum likelihood, Australian Journal of Statistics, 32, 227-230, (1990)
[163] Wolfinger, R.; O’Connell, M., Generalized linear mixed models: a pseudo-likelihood approach, Journal of Statistical Computation and Simulation, 48, 233-vi243, (1993) · Zbl 0833.62067
[164] Wolter, K. M. (1985).Introduction to Variance Estimation. Springer-Verlag, New York. · Zbl 0581.62009
[165] You, Y.; Rao, J. N. K., A pseudo-empirical best linear unbiased prediction approach to small area estimation using survey weights, Canadian Journal of Statistics, 30, 431-439, (2002) · Zbl 1018.62008
[166] Zeger, S. L.; Karim, R. M., Generalized linear models with random effects: a Gibbs sampling approach, Journal of the American Statistical Association, 86, 79-86, (1991)
[167] Beran, R.; Hall, P., Estimating coefficient distributions in random coefficient regressions, The Annals of Statistics, 20, 1970-1984, (1992) · Zbl 0774.62068
[168] El-Amroui, A.; Goffinet, B., Estimation of the density of\(g\) given observations ofy=g+e, Biometrical Journal, 33, 347-355, (1991) · Zbl 0734.62041
[169] Hall, P. andMaiti, T. (2006a). Nonparametric estimation of mean-squared prediction error in nested-error regression models.The Annals of Statistics. To appear. · Zbl 1246.62106
[170] Hall, P. andMaiti, T. (2006b). On parametric bootstrap methods for small-area prediction.Journal of the Royal Statistical Society. Series B. To appear. · Zbl 1100.62039
[171] Li, T.; Vuong, Q., Nonparametric estimation of the measurement error model using multiple indicators, Journal of Multivariate Analysis, 65, 139-165, (1998) · Zbl 1127.62323
[172] Chambers, R. L. (2005). Calibrated weighting for small area estimation. Methodology Working Paper Series M05/04, Southampton Statistical Sciences Research Institute, University of Southampton, United Kingdom.
[173] González-Manteiga, W., Lombardía, M. J., Morales, D., andSantamaría, L. (2005). Estimation of the mean squared error of predictors of small area linear parameters under logistic mixed model. Submitted.
[174] Pfeffermann, D.; Barnard, C. H., Some new estimators for small area means with application to the assessment of farmland values, Journal of Business & Economic Statistics, 9, 73-84, (1991)
[175] Pfeffermann, D. andGlickman, H. (2004). Mean square error approximation in small area estimation by use of parametric and nonparametric bootstrap. InProceedings of the Survey Research Methods Section. American Statistical Association. · Zbl 1117.62389
[176] Pfeffermann, D. andSverchkov, M. (2005). Small area estimation under informative probability sampling of areas and within the selected areas. Working Paper Series M05/18, Southampton Statistical Sciences Research Institute, University of Southampton, U.K. · Zbl 1333.62023
[177] Pfeffermann, D.; Tiller, R., Bootstrap approximation to prediction MSE for state-space models with estimated parameters, Journal of Time Series Analysis, 26, 893-916, (2005) · Zbl 1097.62086
[178] Pfeffermann, D. andTiller, R. (2005b). Small area estimation with state-space models subject to benchmark constraints. Working Paper Series M05/14, Southampton Statistical Sciences Research Institute, University of Southampton, U.K. · Zbl 1171.62346
[179] Sallas, W. H.; Harville, D. A., Best linear recursive estimation for mixed linear models, Journal of the American Statistical Association, 76, 860-869, (1981) · Zbl 0478.62074
[180] Morris, C. N., Natural exponential families with quadratic variance functions: statistical theory, The Annals of Statistics, 11, 515-529, (1983) · Zbl 0521.62014
[181] Morris, C. N.; Bernardo, J. M. (ed.); DeGroot, M. H. (ed.); Lindley, D. V. (ed.); Smith, A. F. M. (ed.), Approximating posterior distributions and posterior moments, 327-344, (1988), Oxford
[182] Tang, R. (2002).Fitting and Evaluating Certain Two-Level Hierarchical Models. PhD Thesis, Dept. of Statistics, Harvard University.
[183] Lohr, S. andRao, J. N. K. (2003). Resampling methods for MSE estimation with nonlinear small area models. InProceedings of Statistics Canada Symposium 2003. · Zbl 0926.62051
[184] Torabi, M. andRao, J. N. K. (2005). Mean squared error estimators of small area means using survey weights. InProceedings of the Statistical Society of Canada Annual Meeting, Survey Methods Section. · Zbl 1349.62032
[185] Aldridge, D. K., Special supplemental nutrition program for women, infants, and children (WIC) funding formula evolution, Journal of Official Statistics, 18, 429-439, (2002)
[186] Benjamini, Y.; Hochberg, Y., Controlling the false discovery rate: A practical and powerful approach to multiple testing, Journal of the Royal Statistical Society. Series B, 57, 289-300, (1995) · Zbl 0809.62014
[187] Black, M. A., A note on the adaptive control of false discovery rates, Journal of the Royal Statistical Society. Series B, 66, 297-304, (2004) · Zbl 1062.62130
[188] Brackstone, G., Managing data quality in a statistical agency, Survey Methodology, 25, 139-149, (1999)
[189] Brenneman, W. A.; Nair, V. N., Methods for identifying dispersion effects in unreplicated factorial experiments: A critical analysis and proposed strategies, Technometrics, 43, 388-405, (2001)
[190] Daniel, C., Use of half-normal plots in interpreting factorial two-level experiments, Technometrics, 1, 311-341, (1959)
[191] Kahneman, D.; Tversky, A., Prospect theory: an analysis of decision under risk, Econometrica, 47, 263-291, (1979) · Zbl 0411.90012
[192] Kahneman, D.; Tversky, A., Choices,values and frames, American Psychologist, 39, 341-350, (1984)
[193] McGrath, R. N.; Lin, D. K. J., Testing multiple dispersion effects in unreplicated fractional factorial designs, Technometrics, 43, 406-414, (2001)
[194] Shen, W.; Louis, T. A., Triple-goal estimates in two-stage hierarchical models, Journal of the Royal Statistical Society. Series B, 60, 455-471, (1998) · Zbl 0910.62025
[195] Shen, W.; Louis, T. A., Triple-goal estimates for disease mapping, Statistics in Medicine, 17, 2295-2308, (2000)
[196] Storey, J. D., A direct approach to false discovery rates, Journal of the Royal Statistical Society. Series B, 64, 479-498, (2002) · Zbl 1090.62073
[197] Tversky, A.; Kahneman, D., Advances in prospect theory: cumulative representation of uncertainty, Journal of Risk and Uncertainty, 5, 297-323, (1992) · Zbl 0775.90106
[198] Zaslavsky, A. M.; Schirm, A. L., Interactions between survey estimates and federal funding formulas, Journal of Official Statistics, 18, 371-391, (2002)
[199] Zhang, L. C.; Chambers, R. L., Small area estimates for cross-classifications, Journal of the Royal Statistical Society. Series B, 66, 479-496, (2004) · Zbl 1062.62129
[200] Bernardo, J. M.; Dey, D. K. (ed.); Rao, C. R. (ed.), Reference analysis, 17-90, (2005), Amsterdam
[201] Chatterjee, S., Lahiri, P., andLi, H. (2006). Prediction interval estimation for small areas. Unpublished manuscript.
[202] Chen, S. (2001).Empirical Best Prediction and Hierarchical Bayes Methods in Small-Area Estimation. PhD Thesis, Univ. of Nebraska-Lincoln. · Zbl 0767.62004
[203] Datta, G. S.; Lahiri, P.; Maiti, T., Empirical Bayes estimation of Median income of four person families by state using time series and cross-sectional data, Journal of Statistical Planning and Inference, 102, 83-97, (2002) · Zbl 0989.62071
[204] Datta, G. S.; Lahiri, P.; Maiti, T.; Lu, K. L., Hierarchical Bayes estimation of unemployment rates for the states of the U.S., Journal of the American Statistical Association, 94, 1074-1082, (1999)
[205] Datta, G. S. andMukherjee, R. (2004).Probability Matching Priors: Higher Order Asymptotics, Vol. 178 ofLecture Notes in Statistics. Springer-Verlag, New York. · Zbl 1044.62031
[206] Datta, G. S.; Sweeting, T. J.; Dey, D. K. (ed.); Rao, C. R. (ed.), Probability matching priors, 91-114, (2005), Amsterdam
[207] Ganesh, N. andLahiri, P. (2005). Multiple comparisons for small areas. Unpublished manuscript. · Zbl 0643.62018
[208] Ganesh, N., Lahiri, P., andRao, J. N. K. (2005). Mean squared error estimation under nonnormal nested error models. Unpublished manuscript.
[209] Ghosh, M.; Sinha, B. K., On the consistency between model-based and design-based estimators in survey sampling, Communications in Statistics. Theory and Methods, 19, 689-702, (1990) · Zbl 0850.62137
[210] Jiang, J., Empirical method of moments and its applications, Journal of Statistical Planning and Inference, 115, 69-84, (2003) · Zbl 1023.62059
[211] Lahiri, P. andLi, T. (2006). Estimation of the change in total employment using the U.S. current employment statistics survey. Unpublished manuscript.
[212] Little, R. J. A., To model or not to model? competing modes of inference for finite population sampling, Journal of the American Statistical Association, 99, 546-556, (2004) · Zbl 1117.62389
[213] Malec, D.; Sedransk, J., Bayesian methodology for combining the results from different experiments when the specifications for pooling are uncertain, Biometrika, 79, 593-601, (1992) · Zbl 0775.62075
[214] Nandram, B.; Dey, D. K. (ed.); Ghosh, S. K. (ed.); Mallick, B. K. (ed.), Bayesian generalized linear models for inference about small areas, 91-114, (2000), New York
[215] National Research Council, Report 1 (1997).Small Area Estimates of Children in Poverty: Interim Report 1, Evaluation of 1993 Estimates for Title I Allocations. National Academic Press, Washington.
[216] National Research Council, Report 3 (1999).Small Area Estimates of Children in Poverty: Interim Report 3, Evaluation of 1995 County and School District Estimates for Title I Allocations. National Academic Press, Washington.
[217] Opsomer, J. D., Breidt, F. J., Claeskens, G., Kauermann, G., andRanalli, G. (2004). Nonparametric small area estimation using penalized spline regression. InProceedings of the Survey Research Methods Section. American Statistical Association. To appear. · Zbl 05563354
[218] Rao, J. N. K.; Yu, M., Small area estimation by combining time series and cross-sectional data, Canadian Journal of Statistics, 22, 511-528, (1994) · Zbl 0819.62014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.