×

zbMATH — the first resource for mathematics

Finite-time stabilization of linear systems via impulsive control. (English) Zbl 1149.93338
Summary: This paper introduces a new concept of finite-time stability of linear time-invariant impulsive systems. A sufficient condition of finite-time stability of the system via impulsive control at fixed times and variable times is obtained, respectively. Such sufficient conditions of finite-time stabilization are given in terms of matrix inequalities. A numerical example is presented to illustrate the efficiency of the proposed results.

MSC:
93D99 Stability of control systems
93C15 Control/observation systems governed by ordinary differential equations
93C05 Linear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1080/002071700445389 · Zbl 0998.93029 · doi:10.1080/002071700445389
[2] DOI: 10.1016/j.automatica.2005.09.007 · Zbl 1099.93042 · doi:10.1016/j.automatica.2005.09.007
[3] Dorato, P. ”Short time stability in linear time-varying systems”. Proceeding of IRE International Convention Record Part 4. pp.83–87. New York
[4] DOI: 10.1109/TAC.2005.851462 · Zbl 1365.93347 · doi:10.1109/TAC.2005.851462
[5] DOI: 10.1080/00207170110080959 · Zbl 1101.93317 · doi:10.1080/00207170110080959
[6] Huang L, Algebra in Systems and Control Theory (1984)
[7] Kablar, NA, Viseslava, K and Debeljkovic, D. 1998. Finite-time stability of time-varying linear singular systems. Proceeding of the 37th IEEE Conference on Decision and Control Tampa. 1998, Florida USA. pp.3831–3836.
[8] DOI: 10.1016/j.automatica.2005.04.012 · Zbl 1086.93051 · doi:10.1016/j.automatica.2005.04.012
[9] DOI: 10.1080/00207170601148291 · Zbl 1117.93004 · doi:10.1080/00207170601148291
[10] DOI: 10.1049/ip-cta:20030599 · doi:10.1049/ip-cta:20030599
[11] DOI: 10.1109/TAC.2003.811262 · Zbl 1364.93691 · doi:10.1109/TAC.2003.811262
[12] DOI: 10.1109/TAC.1967.1098483 · doi:10.1109/TAC.1967.1098483
[13] Yang T, Impulsive Control Theory
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.