×

Three-dimensional instabilities of laminar flow in a rough channel and the concept of hydraulically smooth wall. (English) Zbl 1150.76021

Summary: Flow in a channel with distributed surface roughness is considered. Results of the linear stability analysis show that the presence of the roughness destabilizes the traveling-wave instability as well as introduces a new instability that manifests itself in the form of streamwise vortices. The critical conditions for the occurrence of both instabilities are given for different classes of roughness shape. It is shown that these conditions can be predicted with a reasonable accuracy in the case of an arbitrary (but Fourier transformable) roughness by considering only the leading Fourier mode (wavy-wall model). It is argued that the onset of instabilities provides a decision mechanism that determines whether a particular rough wall can be viewed as being hydraulically smooth in the case of transitional flows.

MSC:

76E05 Parallel shear flows in hydrodynamic stability
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G. Hagen, Über den Einfluss der Temperatur auf die Bewegung des Wasser in Röhren, Math. Abh. Akad. Wiss., Berlin, (1854) 17-98; G. Hagen, Über den Einfluss der Temperatur auf die Bewegung des Wasser in Röhren, Math. Abh. Akad. Wiss., Berlin, (1854) 17-98
[2] Darcy, H., Recherches expérimentales relatives au mouvement de l’eau dans les tuyaux (1857), Mallet-Bachelier: Mallet-Bachelier Paris
[3] Reynolds, O., An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the wall of resistance in parallel channels, Philos. Trans. Roy. Soc. London, 174, 935-982 (1883) · JFM 16.0845.02
[4] Jimenez, J., Turbulent flows over rough walls, Annu. Rev. Fluid Mech., 36, 173-196 (2004) · Zbl 1125.76348
[5] J. Nikuradse, Strömungsgesetze in Rauhen Rohren, VDI-Forschungscheft #361 (1933); also NACA TM 1292 (1950); J. Nikuradse, Strömungsgesetze in Rauhen Rohren, VDI-Forschungscheft #361 (1933); also NACA TM 1292 (1950)
[6] Colebrook, C. F., Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipes, J. Inst. Civil Engineers London, 11, 133-156 (1939)
[7] Moody, L. F., Friction factors for pipe flow, Trans. ASME, 66, 671-684 (1944)
[8] Bradshaw, P., A note on “critical roughness” and “transitional roughness”, Phys. Fluids, 12, 1611-1614 (2000) · Zbl 1149.76323
[9] Waigh, D. R.; Kind, R. J., Improved aerodynamic characterization of regular three-dimensional roughness, AIAA J., 36, 1117-1119 (1998)
[10] Morkovin, M. V., On roughness-induced transition: facts, views and speculations, (Hussaini, M. Y.; Voigt, R. G., Instability and Transition. Instability and Transition, ICASE/NASA LARC Series, vol. 1 (1990), Springer), 281-295
[11] A. Fage, The smallest size of spanwise surface corrugation which affects boundary layer transition on an airfoil, Br. Aero. Res. Council Report No. 2120, 1943; A. Fage, The smallest size of spanwise surface corrugation which affects boundary layer transition on an airfoil, Br. Aero. Res. Council Report No. 2120, 1943
[12] B.H. Carmichael, Surface waviness criteria for swept and unswept laminar suction wings, Northrop Aircraft Report No. NOR-59-438 (BLC123), 1957; B.H. Carmichael, Surface waviness criteria for swept and unswept laminar suction wings, Northrop Aircraft Report No. NOR-59-438 (BLC123), 1957
[13] Schlichting, H., Boundary Layer Theory (1979), McGraw-Hill
[14] Tani, I., Effect of two dimensional and isolated roughness elements, (Lachman, G. V., Boundary Layer and Flow Control, vol. 2 (1961), Pergamon), 637-656
[15] Doenhoff, A. E.; Braslow, A. L., The effect of distributed surface roughness on laminar airfoil, (Lachman, G. V., Boundary Layer and Flow Control, vol. 2 (1961), Pergamon), 657-681
[16] Klebanoff, P. S.; Tidstrom, K. D., Mechanism by which a two-dimensional roughness element induces boundary layer transition, Phys. Fluids, 15, 1172-1188 (1972)
[17] Nayfeh, A. H.; Ragab, S. A.; Al-Maaitah, A. A., Effect of bulges on the stability of boundary layers, Phys. Fluids, 4, 796-806 (1988)
[18] Masad, J. A.; Iyer, V., Transition prediction and control in subsonic flow over a hump, Phys. Fluids, 6, 313-327 (1994) · Zbl 0925.76275
[19] Floryan, J. M., On the Görtler instability of boundary layers, Progr. Aerospace Sci., 28, 235-271 (1991) · Zbl 0800.76017
[20] Reshotko, E., Disturbances in a laminar boundary layer due to distributed surface roughness, (Tatsumi, T., Turbulence and Chaotic Phenomena, Proceedings of IUTAM Symposium (1984), Elsevier), 39-46
[21] Corke, T. C.; Bar Sever, A.; Morkovin, M. V., Experiments on transition enhancements by distributed roughness, Phys. Fluids, 29, 3199-3213 (1986)
[22] Singh, K.; Lumley, J. L., Effect of roughness on the velocity profile of a laminar boundary layer, Appl. Sci. Res., 24, 168-186 (1972) · Zbl 0229.76021
[23] Lessen, M.; Gangwani, S. T., Effect of small amplitude wall waviness upon the stability of the laminar boundary layer, Phys. Fluids, 19, 510-513 (1976) · Zbl 0324.76032
[24] J.M. Kendall, Laminar boundary layer velocity distortion by surface roughness: Effect upon stability, AIAA Paper 81-0195, AIAA 19th Aerospace Sciences Meeting, 1981; J.M. Kendall, Laminar boundary layer velocity distortion by surface roughness: Effect upon stability, AIAA Paper 81-0195, AIAA 19th Aerospace Sciences Meeting, 1981
[25] C.L. Merkle, K.T.-S. Tzou, T. Kubota, An analytical study of the effect of surface roughness on boundary layer stability, Dynamics Technology Inc., Report DT-7606-4, 1977; C.L. Merkle, K.T.-S. Tzou, T. Kubota, An analytical study of the effect of surface roughness on boundary layer stability, Dynamics Technology Inc., Report DT-7606-4, 1977
[26] Floryan, J. M., Stability of wall-bounded shear layers in the presence of simulated distributed roughness, J. Fluid Mech., 335, 29-55 (1997) · Zbl 0890.76019
[27] Floryan, J. M., Two-dimensional instability of flow in a rough channel, Phys. Fluids, 17, 044101/8 (2005) · Zbl 1187.76159
[28] Floryan, J. M.; Asai, M., Stability of flow in a rough channel, (Proceedings of the 21 International Congress of Theoretical and Applied Mechanics, Warsaw, Poland (2004), Springer) · Zbl 1171.76302
[29] Floryan, J. M., Centrifugal instability of Couette flow over a wavy-wall, Phys. Fluids, 14, 312-322 (2002) · Zbl 1184.76166
[30] Floryan, J. M., Vortex instability in a converging-diverging channel, J. Fluid Mech., 482, 17-50 (2003) · Zbl 1034.76020
[31] E. Reshotko, A. Tumin, Investigation of the role of transient growth in roughness induced transition, AIAA Paper 2002-2850, 32nd AIAA Fluid Dynamics Conference, St. Louis, 2002; E. Reshotko, A. Tumin, Investigation of the role of transient growth in roughness induced transition, AIAA Paper 2002-2850, 32nd AIAA Fluid Dynamics Conference, St. Louis, 2002
[32] Szumbarski, J.; Floryan, J. M., A direct spectral method for determination of flows over corrugated boundaries, J. Comp. Phys., 153, 378-402 (1999) · Zbl 0951.76068
[33] Phillips, W. R.C., On the nonlinear instability of strong wavy shear to longitudinal vortices, (Debnath, L.; Riahi, D. N., Nonlinear Instability, Chaos and Turbulence. Nonlinear Instability, Chaos and Turbulence, Advances in Fluid Mechanics, vol. 20 (1999), WIT Press: WIT Press UK), 251-273
[34] Rayleigh, Lord, On the dynamics of the revolving fluids, Scientific Papers, 6, 447-453 (1920)
[35] Squire, H. B., On the stability of three-dimensional disturbances of viscous flow between parallel walls, Proc. Roy. Soc. A, 142, 621-628 (1933) · JFM 59.1458.02
[36] Orr, W. M., The stability or instability of the steady motions of a perfect liquid and a viscous liquid, Proc. Roy. Irish Acad. A, 27, 9-27 (1907), 69-138
[37] A. Sommerfeld, Ein Beitrag zur hydrodynamishen Erklärung der turbulenten Flüssigkeitsbewegung, in: Proceedings of the 4th International Congress of Mathematicians, III, Roma, 1908, pp. 116-124; A. Sommerfeld, Ein Beitrag zur hydrodynamishen Erklärung der turbulenten Flüssigkeitsbewegung, in: Proceedings of the 4th International Congress of Mathematicians, III, Roma, 1908, pp. 116-124
[38] Mack, L. M., A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer, J. Fluid Mech., 73, 497-520 (1976) · Zbl 0339.76030
[39] Perry, A. E.; Fairlie, B. D., Critical points in flow patterns, Adv. Geophys. B, 18, 299-315 (1974)
[40] Floryan, J. M., Görtler instability of boundary layers over concave and convex walls, Phys. Fluids, 29, 2380-2387 (1986)
[41] Craik, A. D.D., Wave-induced longitudinal-vortex instability in shear flows, J. Fluid Mech., 125, 37-82 (1982) · Zbl 0503.76028
[42] Leibovich, S., Convective instability of stably stratified water in the ocean, J. Fluid Mech., 82, 561-585 (1977)
[43] Fransson, J. H.M.; Talamelli, A.; Brandt, L.; Cossu, C., Delaying transition to turbulence by a passive mechanism, Phys. Rev. Lett., 96, 064501 (2006)
[44] Cabal, T.; Szumbarski, J.; Floryan, J. M., Stability of flow in a wavy channel, J. Fluid Mech., 457, 191-212 (2002) · Zbl 1001.76034
[45] Tollmien, W., Ein allgemeines Kriterium der Instabilität laminarer Geschwindigkeitsverteilungen, Nachrichten von der Gesellschaft der Wissenschafen zu Göttingen, Mathematisch-Physische Klasse, Fachgruppe I, 1, 79-114 (1935), (also: General instability criterion of laminar velocity distributions, National Advisory Committee for Aeronautics, Washington, Technical Memorandum No. 792 (1936)) · JFM 61.0925.01
[46] Schlichting, H., Berechnung der Anfachung kleiner Störungen bei der Plattenströmung, ZAMM, 13, 171-174 (1933) · JFM 59.0767.04
[47] Gaster, M., A note on the relation between temporally-increasing and spatially-increasing disturbances in the hydrodynamic stability theory, J. Fluid Mech., 14, 222-224 (1962) · Zbl 0108.20503
[48] Herbert, T., Finite amplitude stability of plane parallel flows, AGARD Conf. Proc., 224, 3.1-3.10 (1977)
[49] Ehrenstein, U.; Koch, W., Three-dimensional wavelike equilibrium states in plane Poiseuille flow, J. Fluid Mech., 228, 111-148 (1991) · Zbl 0724.76036
[50] Jimenez, J., Transition to turbulence in two-dimensional Poiseuille flow, J. Fluid Mech., 218, 265-297 (1990)
[51] Orszag, S. A.; Patera, A. T., Secondary instability of wall-bounded shear flows, J. Fluid Mech., 128, 347-385 (1983) · Zbl 0556.76039
[52] Herbert, T., Secondary instability of boundary layers, Annu. Rev. Fluid Mech., 20, 487-526 (1988)
[53] Nishioka, M.; Asai, M., Some observations of the subcritical transition in plane Poiseuille flow, J. Fluid Mech., 150, 441-450 (1985)
[54] Trefethen, L. N.; Trefethen, A. E.; Reddy, S. C.; Driscoll, T. A., Hydrodynamic stability without eigenvalues, Science, 261, 577-584 (1993) · Zbl 1226.76013
[55] Stuart, J. T., On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 1. The basic behavior in plane Poiseuille flow, J. Fluid Mech., 9, 353-370 (1960) · Zbl 0096.21102
[56] Reddy, S. C.; Schmid, P. J.; Henningson, D. S., Pseudospectra of the Orr-Sommerfeld operator, SIAM J. Appl. Math., 53, 15-47 (1993) · Zbl 0778.34060
[57] Butler, K. M.; Farrell, B. F., Three-dimensional optimal perturbations in viscous shear flow, Phys. Fluids A, 4, 1637-1650 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.