×

zbMATH — the first resource for mathematics

Generalized Kaloujnine groups, uniseriality and height of automorphisms. (English) Zbl 1151.20019

MSC:
20E08 Groups acting on trees
20E22 Extensions, wreath products, and other compositions of groups
20B35 Subgroups of symmetric groups
20E07 Subgroup theorems; subgroup growth
20F14 Derived series, central series, and generalizations for groups
20E36 Automorphisms of infinite groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bartholdi L., London Math. Soc. Lecture Note Ser. 275 pp 1– (1998)
[2] Ju. Bodnarchuk and V. Sushchanskii, Computations in Algebra and Combinatorial Analysis (Russian), Akad. Nauk Ukrain. SSR (Inst. Kibernet., Kiev, 1978) pp. 87–101.
[3] E. Casadio Tarabusi, Geometry Seminars 1996–1997 (Bologna) (Univ. Stud. Bologna, Bologna, 1998) pp. 1–13.
[4] DOI: 10.1017/CBO9780511470882 · doi:10.1017/CBO9780511470882
[5] Dmitruk Ju. V., Ukrain. Math. Ž. 30 pp 155–
[6] Dmitruk Ju. V., Ukrain. Mat. Zh. 34 pp 356–
[7] Ju. Dmitruk and V. Sushchanskii, Theoretical and Applied Questions of Differential Equations and Algebra 262 (Naukova Dumka, Kiev, 1978) pp. 85–90.
[8] Dmitruk Ju., Ukrain. Mat. Zh. 33 pp 304–
[9] DOI: 10.1007/978-1-4612-1380-2_4 · doi:10.1007/978-1-4612-1380-2_4
[10] de la Harpe P., Chicago Lectures in Mathematics, in: Topics in Geometric Group Theory (2000) · Zbl 0965.20025
[11] Kaloujnine L. A., Ann. Sci. Ècole Norm. Sup. (3) 65 pp 239–
[12] Kaloujnine L. A., C. R. Acad. Sci. Paris 221 pp 222–
[13] DOI: 10.1112/jlms/50.1.49 · Zbl 0822.20018 · doi:10.1112/jlms/50.1.49
[14] Leedham-Green Ch. R., London Mathematical Society Monographs, New Series, 27, in: The Structure of Groups of Prime Power Order (2002) · Zbl 1008.20001
[15] Lentoudis P., C. R. Math. Acad. Sci. Soc. R. Can. 7 pp 67–
[16] Lentoudis P., C. R. Math. Acad. Sci. Soc. R. Can. 7 pp 133–
[17] Lentoudis P., C. R. Acad. Sci. Paris, Série I 305 pp 847–
[18] MacWilliams F. J., North-Holland Mathematical Library 16, in: The Theory of Error-Correcting Codes (1977)
[19] M. A. Picardello, Harmonic Analysis and Integral Geometry (Safi, 1998), Chapman & Hall/CRC Res. Notes Math. 422 (Chapman & Hall/CRC, Boca Raton, 1998) pp. 47–53.
[20] DOI: 10.4213/mzm1821 · doi:10.4213/mzm1821
[21] DOI: 10.1007/BF01231763 · Zbl 0795.20009 · doi:10.1007/BF01231763
[22] DOI: 10.1090/S0002-9939-1955-0072142-7 · doi:10.1090/S0002-9939-1955-0072142-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.