×

Mode competition in modulated Taylor-Couette flow. (English) Zbl 1151.76576

Summary: The effects of harmonically oscillating the inner cylinder about a zero mean rotation in a Taylor-Couette flow are investigated experimentally and numerically. The resulting time-modulated circular Couette flow possesses a Z\(_{2}\) spatio-temporal symmetry which gives rise to two distinct modulated Taylor vortex flows. These flows are initiated at synchronous bifurcations, have the same spatial symmetries, but are characterized by different spatio-temporal symmetries and axial wavenumber. Mode competition between these two states has been investigated in the region where they bifurcate simultaneously. In the idealized numerical model, the two flows have been found to coexist and be stable in a narrow region of parameter space. However, in the physical experiment, neither state has been observed in the coexistence region. Instead, we observe noise-sustained flows with irregular time-dependent axial wavenumber. Movies are available with the online version of the paper.

MSC:

76R05 Forced convection
76U05 General theory of rotating fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/j.fluiddyn.2004.12.001 · Zbl 1153.76362 · doi:10.1016/j.fluiddyn.2004.12.001
[2] DOI: 10.1017/S0022112076000426 · Zbl 0334.76024 · doi:10.1017/S0022112076000426
[3] Marques, Physica 189 pp 247– (2004)
[4] DOI: 10.1007/s00162-002-0065-x · Zbl 1101.76331 · doi:10.1007/s00162-002-0065-x
[5] Linek, Phys. Rev. 8 pp 3168– (1998)
[6] Kuznetsov, Elements of Applied Bifurcation Theory (2004) · doi:10.1007/978-1-4757-3978-7
[7] DOI: 10.1103/PhysRevA.34.4956 · doi:10.1103/PhysRevA.34.4956
[8] DOI: 10.1017/S0022112097007465 · Zbl 0903.76070 · doi:10.1017/S0022112097007465
[9] DOI: 10.1017/S0022112065000241 · Zbl 0134.21705 · doi:10.1017/S0022112065000241
[10] DOI: 10.1017/S0022112083000208 · Zbl 0519.76045 · doi:10.1017/S0022112083000208
[11] DOI: 10.1017/S0022112081001961 · Zbl 0477.76031 · doi:10.1017/S0022112081001961
[12] DOI: 10.1017/S002211207500016X · Zbl 0297.76040 · doi:10.1017/S002211207500016X
[13] DOI: 10.1017/S0022112004002095 · Zbl 1065.76097 · doi:10.1017/S0022112004002095
[14] DOI: 10.1063/1.869736 · doi:10.1063/1.869736
[15] Donnelly, Proc. R. Soc. Lond. 281 pp 130– (1964)
[16] Barkley, Phys. Rev. 61 pp 5247– (2000)
[17] DOI: 10.1017/S0022112096002777 · Zbl 0882.76028 · doi:10.1017/S0022112096002777
[18] DOI: 10.1017/S0022112089002806 · Zbl 0687.76041 · doi:10.1017/S0022112089002806
[19] DOI: 10.1063/1.2204967 · Zbl 1185.76586 · doi:10.1063/1.2204967
[20] DOI: 10.1017/S0022112003004828 · Zbl 1057.76067 · doi:10.1017/S0022112003004828
[21] Youd, Phys. Rev. 72 pp 056321– (2005)
[22] DOI: 10.1146/annurev.fl.28.010196.002401 · doi:10.1146/annurev.fl.28.010196.002401
[23] DOI: 10.1017/S002211200200349X · Zbl 1032.76508 · doi:10.1017/S002211200200349X
[24] Tuckerman, Physica 46 pp 57– (1990)
[25] DOI: 10.1098/rsta.1923.0008 · doi:10.1098/rsta.1923.0008
[26] DOI: 10.1017/S0022112081002565 · doi:10.1017/S0022112081002565
[27] DOI: 10.1103/PhysRevLett.52.705 · doi:10.1103/PhysRevLett.52.705
[28] DOI: 10.1017/S0022112085000672 · doi:10.1017/S0022112085000672
[29] DOI: 10.1103/PhysRevA.33.547 · doi:10.1103/PhysRevA.33.547
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.