Implicit-explicit finite-difference lattice Boltzmann method for compressible flows. (English) Zbl 1151.82405

We propose an implicit-explicit finite-difference lattice Boltzmann method for compressible flows in this work. The implicit-explicit Runge-Kutta scheme, which solves the relaxation term of the discrete velocity Boltzmann equation implicitly and other terms explicitly, is adopted for the time discretization. Owing to the characteristic of the collision invariants in the lattice Boltzmann method, the implicitness can be completely eliminated, and thus no iteration is needed in practice. In this fashion, problems (no matter stiff or not) can be integrated quickly with large Courant-Friedriche-Lewy numbers. As a result, with our implicit-explicit finite-difference scheme the computational convergence rate can be significantly improved compared with the previous finite-difference and standard lattice Boltzmann methods. Numerical simulations of Riemann problem, Taylor vortex flow, Couette flow, and oscillatory compressible flows with shock waves show that our implicit-explicit finite-difference lattice Boltzmann method is accurate and efficient. In addition, it is demonstrated that with the proposed scheme non-uniform meshes can also be implemented with ease.


82D15 Statistical mechanics of liquids
76M28 Particle methods and lattice-gas methods
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
Full Text: DOI


[1] Succi S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (2001) · Zbl 0990.76001
[2] DOI: 10.1016/0370-1573(92)90090-M
[3] DOI: 10.1146/annurev.fluid.30.1.329 · Zbl 1398.76180
[4] DOI: 10.1103/PhysRevLett.61.2332
[5] DOI: 10.1209/0295-5075/9/4/008
[6] DOI: 10.1209/0295-5075/10/5/008
[7] DOI: 10.1103/PhysRevE.72.056301
[8] DOI: 10.1142/S012918319300077X
[9] DOI: 10.1006/jcph.1998.6057 · Zbl 0919.76068
[10] DOI: 10.1002/fld.337 · Zbl 1014.76071
[11] DOI: 10.1063/1.1597681 · Zbl 1186.76148
[12] DOI: 10.1103/PhysRevE.72.016703
[13] DOI: 10.1142/S0129183106009023 · Zbl 1107.82370
[14] DOI: 10.1103/PhysRevE.56.6811
[15] DOI: 10.1016/0045-7930(94)00037-Y · Zbl 0845.76086
[16] Yan G., Phys. Rev. E 59 pp 454–
[17] Shi W. P., Numer. Heat Trans. Part B 40 pp 1–
[18] DOI: 10.1103/PhysRevE.69.056702
[19] DOI: 10.1103/PhysRevE.47.R2249
[20] DOI: 10.1103/PhysRevE.50.2776
[21] DOI: 10.1103/PhysRevE.69.035701
[22] DOI: 10.1103/PhysRevE.55.R21
[23] DOI: 10.1006/jcph.1998.5984 · Zbl 0934.76074
[24] DOI: 10.1142/S0129183198001059
[25] DOI: 10.1103/PhysRevE.67.066709
[26] DOI: 10.1103/PhysRevE.67.036306
[27] DOI: 10.1103/PhysRevE.67.046708
[28] DOI: 10.1103/PhysRevE.70.046702
[29] DOI: 10.1103/PhysRevE.71.026701
[30] DOI: 10.1103/PhysRevE.71.066706
[31] DOI: 10.1007/BF01341755 · Zbl 0925.82036
[32] DOI: 10.1103/PhysRevE.58.3955
[33] DOI: 10.1103/PhysRevE.59.6202
[34] DOI: 10.1016/j.matcom.2006.05.009 · Zbl 1102.76057
[35] DOI: 10.1006/jcph.2001.6791 · Zbl 1017.76043
[36] DOI: 10.1142/S021797920301700X
[37] DOI: 10.1142/S0129183102003449
[38] Pareschi L., J. Sci. Comput. 25 pp 129–
[39] Zhang H. X., Acta Aerodyn. Sin. 6 pp 143–
[40] DOI: 10.1007/s10915-006-9116-6 · Zbl 1115.76057
[41] DOI: 10.1006/jcph.1996.0130 · Zbl 0877.65065
[42] DOI: 10.1103/PhysRevE.75.036704
[43] DOI: 10.1016/S0021-9991(02)00026-8 · Zbl 1062.76556
[44] DOI: 10.1063/1.1471914 · Zbl 1185.76156
[45] DOI: 10.1080/104077801300348860
[46] DOI: 10.1006/jsvi.1996.0431
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.