×

A class of nonlinear integral operators preserving double subordinations. (English) Zbl 1152.30311

Summary: The purpose of the present paper is to investigate some subordination- and superordination-preserving properties of certain integral operators defined on the space of meromorphic functions in the punctured open unit disk. The sandwich-type theorem for these integral operators is also considered.

MSC:

30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
30C80 Maximum principle, Schwarz’s lemma, Lindelöf principle, analogues and generalizations; subordination
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, vol. 225 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 2000. · Zbl 0048.31101
[2] S. S. Miller and P. T. Mocanu, “Subordinants of differential superordinations,” Complex Variables and Elliptic Equations, vol. 48, no. 10, pp. 815-826, 2003. · Zbl 1039.30011
[3] A. W. Goodman, Univalent Functions. Vol. I, Mariner, Tampa, Fla, USA, 1983. · Zbl 0048.31101
[4] A. W. Goodman, Univalent Functions. Vol. II, Mariner, Tampa, Fla, USA, 1983. · Zbl 0048.31101
[5] S. S. Miller and P. T. Mocanu, “Univalent solutions of Briot-Bouquet differential equations,” Journal of Differential Equations, vol. 56, no. 3, pp. 297-309, 1985. · Zbl 0507.34009
[6] S. K. Bajpai, “A note on a class of meromorphic univalent functions,” Revue Roumaine de Mathématiques Pures et Appliquées, vol. 22, no. 3, pp. 295-297, 1977. · Zbl 0048.31101
[7] S. S. Bhoosnurmath and S. R. Swamy, “Certain integrals for classes of univalent meromorphic functions,” Ganita, vol. 44, no. 1-2, pp. 19-25, 1993. · Zbl 0048.31101
[8] A. Dernek, “Certain classes of meromorphic functions,” Annales Universitatis Mariae Curie-Skłodowska. Sectio A, vol. 42, pp. 1-8, 1988. · Zbl 0048.31101
[9] S. P. Dwivedi, G. P. Bhargava, and S. L. Shukla, “On some classes of meromorphic univalent functions,” Revue Roumaine de Mathématiques Pures et Appliquées, vol. 25, no. 2, pp. 209-215, 1980. · Zbl 0048.31101
[10] R. M. Goel and N. S. Sohi, “On a class of meromorphic functions,” Glasnik Matemati\vcki, vol. 17(37), no. 1, pp. 19-28, 1982. · Zbl 0048.31101
[11] S. Stević, “The generalized Libera transform on Hardy, Bergman and Bloch spaces on the unit polydisc,” Zeitschrift für Analysis und ihre Anwendungen, vol. 22, no. 1, pp. 179-186, 2003. · Zbl 0048.31101
[12] S. Stević, “A note on the generalized Cesàro operator on Bergman spaces,” Indian Journal of Mathematics, vol. 46, no. 1, pp. 129-136, 2004. · Zbl 0048.31101
[13] S. Stević, “On Libera type transform on the unit disc, polydisc and the unit ball,” to appear in Integral Transforms and Special Functions. · Zbl 0048.31101
[14] S. S. Miller, P. T. Mocanu, and M. O. Reade, “Subordination-preserving integral operators,” Transactions of the American Mathematical Society, vol. 283, no. 2, pp. 605-615, 1984. · Zbl 0506.30011
[15] S. Owa and H. M. Srivastava, “Some subordination theorems involving a certain family of integral operators,” Integral Transforms and Special Functions, vol. 15, no. 5, pp. 445-454, 2004. · Zbl 1057.30015
[16] T. Bulboac\ua, “A class of superordination-preserving integral operators,” Indagationes Mathematicae. New Series, vol. 13, no. 3, pp. 301-311, 2002. · Zbl 0048.31101
[17] S. S. Miller and P. T. Mocanu, “Differential subordinations and univalent functions,” Michigan Mathematical Journal, vol. 28, no. 2, pp. 157-172, 1981. · Zbl 0439.30015
[18] Ch. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, Germany, 1975. · Zbl 0048.31101
[19] W. Kaplan, “Close-to-convex schlicht functions,” Michigan Mathematical Journal, vol. 1, pp. 169-185, 1952. · Zbl 0048.31101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.