Further results on passivity analysis of delayed cellular neural networks. (English) Zbl 1152.34380

Summary: The passivity condition for delayed neural networks with uncertainties is considered in this article. From simple extension of a recent work for stability analysis of the system, a new criterion for the passivity of the system is derived in terms of linear matrix inequalities (LMIs), which can be easily solved by using various convex optimization algorithms. A numerical example is given to show the usefulness of our result.


34K20 Stability theory of functional-differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
93D09 Robust stability


LMI toolbox
Full Text: DOI


[1] Hopfield, J., Proc natl acad sci USA, 81, 3088, (1984)
[2] Guo, S.J.; Huang, L.H.; Dai, B.X.; Zhang, Z.Z., Phys lett A, 317, 97, (2003)
[3] Zhao, H., Phys lett A, 297, 182, (2002)
[4] Li, Y., Chaos, solitons & fractals, 24, 279, (2005)
[5] Cao, J., Int J systems sci, 31, 1313, (2000)
[6] Chen, A.; Huang, L.; Cao, J., Appl math comput, 137, 177, (2003)
[7] Liang, J.; Cao, J., Chaos, solitons & fractals, 22, 773, (2004)
[8] Huang, X.; Cao, J.; Huang, D.S., Chaos, solitons & fractals, 24, 885, (2005)
[9] Huang, L.; Huang, C.; Liu, B., Phys lett A, 345, 330, (2005)
[10] Arik, S., Phys lett A, 311, 504, (2003)
[11] Zhang, Q.; Wei, X.; Xu, J., Phys lett A, 318, 399, (2003)
[12] Zhang, H.; Li, C.; Liao, X., Chaos, solitons & fractals, 25, 357, (2005)
[13] Park, J.H., Chaos, solitons & fractals, 29, 446, (2006)
[14] Cho HJ, Park JH. Chaos, Solitons & Fractals; in press. doi:10.1016/j.chaos.2005.11.040.
[15] Willems, J.C., Arch ration mech anal, 45, 321, (1972)
[16] Lozano, R.; Brogliato, B.; Egeland, O.; Maschke, B., Dissipative systems analysis and control: theory and applications, (2000), Springer-Verlag London · Zbl 0958.93002
[17] Wei DQ, Luo XS. Chaos, Solitons & Fractals; in press. doi:10.1016/j.chaos.2005.10.097.
[18] Li, C.; Liao, X., IEEE trans circuits syst II express briefs, 52, 471, (2005)
[19] Boyd, B.; Ghaoui, L.E.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in systems and control theory, (1994), SIAM Philadelphia
[20] Gahinet, P.; Nemirovski, A.; Laub, A.; Chilali, M., LMI control toolbox user’s guide, (1995), The Mathworks Massachusetts
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.