On chaos synchronization of a complex two coupled dynamos system. (English) Zbl 1152.37317

Summary: The main objective of this work is to investigate the chaotic behavior and chaos synchronization of a complex two coupled dynamos system subject to different initial conditions. This system exhibits a chaotic attractor which is found numerically. The global synchronization and active control techniques are used in this investigation. The feedback gain matrix and Lyapunov function are calculated and used to show that the linear error dynamical system is asymptotically stable. The analytical results are tested numerically and excellent agreement is found.


37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Full Text: DOI


[1] Lakshmanan, M.; Murali, K., Chaos in nonlinear oscillators: controlling and synchronization, (1996), World Scientific Singapore · Zbl 0868.58058
[2] Blasius, B.; Huppert, A.; Stone, L., Complex dynamics and phase synchronization in spatially extended ecological system, Nature, 399, 354-359, (1999)
[3] Wang, C.C.; Su, J.P., A new adaptive structure control for chaotic synchronization and secure communication, Chaos, solitons & fractals, 20, 967-977, (2004) · Zbl 1050.93036
[4] Pecora, L.M.; Carroll, T.L., Synchronization in chaotic systems, Phys rev lett, 64, 8, 821-824, (1990) · Zbl 0938.37019
[5] Pecora, L.M.; Carroll, T.L., Synchronizing chaotic circuits, IEEE tans cir sys, 38, 453-456, (1991)
[6] Chen, G.; Dong, X., From chaos to order: methodologies, perspectives and applications, (1998), World Scientific Singapore
[7] Dai, E.W.; Lonngren, K.E., Sequential synchronization of two Lorenz systems using active control, Chaos, solitons & fractals, 11, 1041-1044, (2000) · Zbl 0985.37106
[8] Wu, X.; Lu, J., Parameter identification and backstepping control of uncertain Lü system, Chaos, solitons & fractals, 18, 721-729, (2003) · Zbl 1068.93019
[9] Agiza, H.N., Controlling chaos for the dynamical system of coupled dynamos, Chaos, solitons & fractals, 13, 341-352, (2002) · Zbl 0994.37047
[10] Agiza, H.N., Chaos synchronization of two coupled dynamos systems with unknown system parameters, Int J modern phys C, 15, 6, 873-883, (2004) · Zbl 1082.34041
[11] Lei, Y.; Xu, W.; Shen, J.; Fang, T., Global synchronization of two parametrically excited systems using active control, Chaos, solitons & fractals, 28, 428-436, (2006) · Zbl 1084.37029
[12] Jayaram, A.; Tadi, M., Synchronization of chaotic systems based on SDRE method, Chaos, soliton & fractals, 28, 707-715, (2006) · Zbl 1121.37030
[13] Park, J.H., Chaos synchronization of a chaotic system via nonlinear control, Chaos, solitons & fractals, 25, 579-584, (2005) · Zbl 1092.37514
[14] Wang, Y.; Guan, Z.H.; Wang, H.O., Feedback an adaptive control for the synchronization of Chen system via a single variable, Phys lett A, 312, 34-40, (2003) · Zbl 1024.37053
[15] Yang, X.S.; Chen, G., Some observer-based criteria for discrete-time generalized chaos synchronization, Chaos, solitons & fractals, 13, 1303-1308, (2002) · Zbl 1006.93580
[16] Chen, M.; Han, Z., Controlling and synchronizing feedback control, Chaos, solitons & fractals, 17, 709-716, (2003) · Zbl 1044.93026
[17] Huang, L.; Feng, R.; Wang, M., Synchronization of chaotic systems via nonlinear control, Phys lett. A, 320, 271-275, (2004) · Zbl 1065.93028
[18] Gibbon, J.D.; McGuinness, M.J., The real and complex Lorenz equations in rotating fluids and lasers, Physica, D5, 108-122, (1982) · Zbl 1194.76280
[19] Vladinirov, A.G.; Tornov, V.Y.; Derbov, V.L., The complex Lorenz model: geometric structure, homoclinic bifurcation and one-dimensional map, Int J bifurcat chaos, 8, 4, 723-729, (1998) · Zbl 0938.34037
[20] Mahmoud, Gamal M.; Bountis, T., The dynamics of system of complex nonlinear oscillators: a review, Int J bifurcat chaos, 14, 11, 3821-3846, (2004) · Zbl 1091.34524
[21] Jiang, G.-P.; Tang, K.S.; Chen, G., A simple global synchronization criterion for coupled chaotic systems, Chaos, solitons & fractals, 15, 925-935, (2003) · Zbl 1065.70015
[22] Mahmoud GM, Aly SA, Al-Kashif MA. Basic properties and chaotic synchronization of complex Lorenz system, has been accepted for publication in IJMPC, 2006.
[23] Mahmoud GM, Bountis T, Mahmoud EE. Active control and global synchronization of complex Chen and Lü systems. Int J Bifurcat Chaos. Submitted for publication.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.