×

zbMATH — the first resource for mathematics

Chaos in the Newton-Leipnik system with fractional order. (English) Zbl 1152.37319
Summary: The dynamics of fractional-order systems has attracted increasing attention in recent years. In this paper, the dynamics of the Newton-Leipnik system with fractional order was studied numerically. The system displays many interesting dynamic behaviors, such as fixed points, periodic motions, chaotic motions, and transient chaos. It was found that chaos exists in the fractional-order system with order less than 3. In this study, the lowest order for this system to yield chaos is 2.82. A period-doubling route to chaos in the fractional-order system was also found.

MSC:
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDF BibTeX Cite
Full Text: DOI
References:
[1] Podlubny, I., Fractional differential equations, (1999), Academic Press New York · Zbl 0918.34010
[2] ()
[3] Bagley, R.L.; Calico, R.A., Fractional order state equations for the control of viscoelastically damped structures, J guid control dyn, 14, 304-311, (1991)
[4] Koeller, R.C., Application of fractional calculus to the theory of viscoelasticity, J appl mech, 51, 199, (1984) · Zbl 0544.73052
[5] Koeller, R.C., Polynomial operators, Stieltjes convolution, and fractional calculus in hereditary mechanics, Acta mech, 58, 251-264, (1986) · Zbl 0578.73040
[6] Sun, H.H.; Abdelwahed, A.A.; Onaral, B., Linear approximation for transfer function with a pole of fractional order, IEEE trans autom control, 29, 441-444, (1984) · Zbl 0532.93025
[7] Ichise, M.; Nagayanagi, Y.; Kojima, T., An analog simulation of noninteger order transfer functions for analysis of electrode process, J electroanal chem, 33, 253-265, (1971)
[8] Heaviside, O., Electromagnetic theory, (1971), Chelsea New York · JFM 30.0801.03
[9] Laskin, N., Fractional market dynamics, Physica A, 287, 482-492, (2000)
[10] Kunsezov, D.; Bulagc, A.; Dang, G.D., Quantum levy processes and fractional kinetics, Phys rev lett, 82, 1136-1139, (1999)
[11] Hartley, T.T.; Lorenzo, C.F., Dynamics and control of initialized fractional-order systems, Nonlinear dyn, 29, 201-233, (2002) · Zbl 1021.93019
[12] Hwang, C.; Leu, J.F.; Tsay, S.Y., A note on time-domain simulation of feedback fraction-order systems, IEEE trans autom control, 47, 625-631, (2002) · Zbl 1364.93772
[13] Podlubny, I.; Petras, I.; Vinagre, B.M.; O’Leary, P.; Dorcak, L., Analogue realizations of fractional-order controllers, Nonlinear dyn, 29, 281-286, (2002) · Zbl 1041.93022
[14] Zaslavsky, G.M., Chaos, fractional kinetics, and anomalous transport, Phys rep, 371, 461-580, (2002) · Zbl 0999.82053
[15] Hartley, T.T.; Lorenzo, C.F.; Qammer, H.K., Chaos in a fractional order chua’s system, IEEE trans CAS-I, 42, 485-490, (1995)
[16] Arena P, Caponetto R, Fortuna L, Porto D. Chaos in a fractional order Duffing system. In: Proceedings of ECCTD. Budapest; 1997. p. 1259-62.
[17] Ahmad, W.; El-Khazali, R.; El-Wakli, A., Fractional-order wien-bridge oscillator, Electron lett, 37, 1110-1112, (2001)
[18] Ahmad, W.M.; Sprott, J.C., Chaos in fractional-order autonomous nonlinear systems, Chaos, solitons & fractals, 16, 339-351, (2003) · Zbl 1033.37019
[19] Grigorenko, I.; Grigirenko, E., Chaotic dynamics of the fractional Lorenz system, Phys rev lett, 91, 034101, (2003)
[20] Arena, P.; Fortuna, L.; Porto, D., Chaotic behavior in noninteger-order cellular neural networks, Phys rev E, 61, 776-781, (2000)
[21] Li, C.; Chen, G., Chaos and hyperchaos in fractional order Rössler equation, Physica A, 341, 55-61, (2004)
[22] Sheu LJ, Chen HK, Chen JH, Tam LM. Chaos in a new system with a fractional order. Chaos, Solitons & Fractals, in press, doi:10.1016/j.chaos.2005.10.073.
[23] Sheu LJ, Chen HK, Chen JH, Tam LM. Chaotic dynamics of the fractionally damped Duffing equation. Chaos, Solitons & Fractals; in press, doi:10.1016/j.chaos.2005.11.066.
[24] Leipnik, R.B.; Newton, T.A., Double strange attractors in rigid body motion, Phys lett A, 86, 63-67, (1981)
[25] Wang, X.; Tian, L., Bifurcation analysis and linear control of the newton – leipnik system, Chaos, solitons & fractals, 27, 31-38, (2006) · Zbl 1091.93031
[26] Ge, Z.M.; Chen, H.K.; Chen, H.H., The regular and chaotic motions of a symmetric heavy gyroscope with harmonic excitation, J sound vibr, 198, 131-147, (1996) · Zbl 1235.70016
[27] Ge, Z.M.; Chen, H.K., Stability and chaotic motions of a symmetric heavy gyroscope, Jpn J appl phys, 35, 1954-1965, (1996)
[28] Tong, X.; Mrad, N., Chaotic motion of a symmetric gyro subjected to a harmonic base excitation, Trans ASME J appl mech, 68, 681-684, (2001) · Zbl 1110.74711
[29] Chen, H.K., Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping, J sound vibr, 255, 719-740, (2002) · Zbl 1237.70094
[30] Chen, H.K.; Lin, T.N., Synchronization of chaotic symmetric gyros by one-way coupling conditions, Imeche J mech eng sci, 217, 331-340, (2003)
[31] Chen, H.K.; Lee, C.I., Anti-control of chaos in rigid body motion, Chaos, solitons & fractals, 21, 957-965, (2004) · Zbl 1046.70005
[32] Richter, H., Controlling chaotic system with multiple strange attractors, Phys lett A, 300, 182-188, (2002) · Zbl 0997.37012
[33] Caputo, M., Linear models of dissipation whose Q is almost frequency independent - II, Geophys J R astron soc, 13, 529-539, (1967)
[34] Diethelm, K., An algorithm for the numerical solution of differential equations of fractional order, Electron trans numer anal, 5, 1-6, (1997) · Zbl 0890.65071
[35] Diethelm, K.; Ford, N.J., Analysis of fraction differential equations, J math anal appl, 265, 229-248, (2002) · Zbl 1014.34003
[36] Diethelm, K.; Ford, N.J.; Freed, A.D., A predictor – corrector approach for the numerical solution of fractional differential equations, Nonlinear dyn, 29, 3-22, (2002) · Zbl 1009.65049
[37] Diethelm, K.; Freed, A.D., The fracpece subroutine for the numerical solution of differential equations of fractional order, (), 57-71
[38] Li, C.; Peng, G., Chaos in chen’s system with a fractional order, Chaos, solitons & fractals, 22, 443-450, (2004) · Zbl 1060.37026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.