×

zbMATH — the first resource for mathematics

Mathematical modeling of time fractional reaction-diffusion systems. (English) Zbl 1152.45008
The authors study a fractional-order reaction-diffusion system with two types of variables: activator and inhibitor. The existence of periodic solutions is stablished. A computer simulation is presented.

MSC:
45K05 Integro-partial differential equations
26A33 Fractional derivatives and integrals
35K57 Reaction-diffusion equations
45M15 Periodic solutions of integral equations
65R20 Numerical methods for integral equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ()
[2] M. Ciesielsky, J. Leszhynski, Numerical simulation of anomalous diffusion, CMM-2003, Poland (Reprinted in arXiv:math-ph/0309007).
[3] Cross, M.C.; Hohenberg, P.S., Pattern formation outside of equilibrium, Rev. modern phys., 65, 851-1112, (1993) · Zbl 1371.37001
[4] Dockery, J.D.; Keener, J.P., Diffusive effects on dispersion in excitable media, SIAM J. appl. math., 49, 539-566, (1989) · Zbl 0703.35091
[5] Doelman, A.; Kaper, T.J., Semistrong pulse interactions in a class of coupled reaction – diffusion equations, SIAM J. appl. dynamical systems, 2, 1, 53-96, (2003) · Zbl 1088.35517
[6] El-Sayed, A.M.A., Fractional differential-difference equations, J. fractional calculus, 10, 101-106, (1996) · Zbl 0888.34060
[7] Gafiychuk, V.; Datsko, B., Pattern formation in a fractional reaction – diffusion system, Physica A, 365, 300-306, (2006)
[8] Gafiychuk, V.V.; Datsko, B.Y.; Izmajlova, Yu.Yu., Analysis of the dissipative structures in reaction – diffusion systems with fractional derivatives, Math. methods phys. mech. fields, 49, 4, 109-116, (2006), (in Ukrainian)
[9] Gafiychuk, V.V.; Lubashevskii, I.A., Variational representation of the projection dynamics and random motion of highly dissipative systems, J. math. phys., 36, 10, 5735-5752, (1995) · Zbl 0844.58067
[10] Henry, B.I.; Langlands, T.A.M.; Wearne, S.L., Turing pattern formation in fractional activator – inhibitor systems, Phys. rev. E, 72, 026101, (2005)
[11] Henry, I.; Wearne, S.L., Fractional reaction – diffusion, Physica A, 276, 448-455, (2000)
[12] Henry, B.I.; Wearne, S.L., Existence of Turing instabilities in a two-species fractional reaction – diffusion system, SIAM J. appl. math., 62, 3, 870-887, (2002) · Zbl 1103.35047
[13] Kerner, B.S.; Osipov, V.V., Autosolitons, (1994), Kluwer Academic Publishers Dordrecht · Zbl 0779.73003
[14] Kimmich, R., Strange kinetics, porous media, and NMR, Chem. phys., 284, 243-285, (2002)
[15] Korabel, N.; Zaslavsky, G.M., Transition to chaos in discrete nonlinear schrodinger equation with long-range interaction, Physica A, 378, 223-237, (2007)
[16] Lubashevskii, A.; Gafiychuk, V.V., The projection dynamics of highly dissipative system, Phys. rev. E, 50, 1, 171-181, (1994)
[17] Mainardi, F.; Luchko, Yu.; Pagnini, G., The fundamental solution of the space – time fractional diffusion equation, Fractional calculus appl. anal., 4, 153-191, (2001) · Zbl 1054.35156
[18] Matignon, D., Stability results for fractional differential equations with applications to control processing, Comput. eng. systems appl., 2, 963, (1996)
[19] Mendez, V.; Ortega-Cejas, V., Front propagation in hyperbolic fractional reaction – diffusion equations, Phys. rev. E, 71, 057105, (2005)
[20] Metzler, R.; Klafter, J., The random Walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. rep., 339, 1-77, (2000) · Zbl 0984.82032
[21] Mikhailov, A.S., Foundations of synergetics, (1990), Springer Berlin · Zbl 0712.92001
[22] Muratov, C.B.; Osipov, V.V., Stability of the static spike autosolitons in the gray – scott model, SIAM J. appl. math., 62, 5, 1463-1487, (2002) · Zbl 1012.35042
[23] Nicolis, G.; Prigogine, I., Self-organization in non-equilibrium systems, (1977), Wiley New York · Zbl 0363.93005
[24] Odibat, Z.M.; Shawagfeh, N.T., Generalized Taylor’s formula, Appl. math. comput., 186, 1, 286-293, (2007) · Zbl 1122.26006
[25] Oldham, K.D.; Spanier, J., The fractional calculus: theory and applications of differentiation and integration to arbitrary order, vol. 111, (1974), Academic Press New York · Zbl 0292.26011
[26] Podlubny, I., Fractional differential equations, (1999), Academic Press New York · Zbl 0918.34010
[27] Saichev, A.I.; Zaslavsky, G.M., Fractional kinetic equations: solutions and applications, Chaos, 7, 4, 753-764, (1997) · Zbl 0933.37029
[28] Samko, S.G.; Kilbas, A.A.; Marichev, O.I., Fractional integrals and derivatives: theory and applications, (1993), Gordon and Breach Newark, NJ · Zbl 0818.26003
[29] R.K. Saxena, A.M. Mathai, H.J. Haubold, Fractional reaction – diffusion equations, arXiv:math.CA/0604473, April 2006. · Zbl 1105.35307
[30] Schutz, P.; Bode, M.; Gafiychuk, V.V., Transition from stationary to travelling localized patterns in two-dimensional reaction – diffusion system, Phys. rev. E, 52, 4, 4465-4473, (1995)
[31] Seki, K.; Wojcik, M.; Tachiya, M., Fractional reaction – diffusion equation, J. chem. phys., 119, 2165, (2003)
[32] Tarasov, V.E.; Zaslavsky, G.M., Fractional dynamics of coupled oscillators with long-range interaction, Chaos, 16, 023110, (2006) · Zbl 1152.37345
[33] Varea, C.; Barrio, R.A., Travelling Turing patterns with anomalous diffusion, J. phys. condens. matter, 16, 5081-5090, (2004)
[34] Weitzner, H.; Zaslavsky, G.M., Some applications of fractional equations, Comm. nonlinear sci. numer. simulation, 8, 273-281, (2003) · Zbl 1041.35073
[35] Yu, R.; Zhang, H., New function of mittag – leffler type and its application in the fractional diffusion-wave equation, Chaos, solitons and fractals, 30, 946-955, (2006) · Zbl 1142.35479
[36] Zaslavsky, G.M., Chaos, fractional kinetics, and anomalous transport, Phys. rep., 371, 461-580, (2002) · Zbl 0999.82053
[37] G.M. Zaslavsky, A.A. Stanislavsky, M. Edelman, Chaotic and pseudochaotic attractors of perturbed fractional oscillator, arXiv:nlin.CD/0508018, 2005. · Zbl 1144.37425
[38] G.M. Zaslavsky, H. Weitzner, Some applications of fractional equations, E-print nlin.CD/0212024, 2002.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.