×

zbMATH — the first resource for mathematics

Connected sums of unstabilized Heegaard splittings are unstabilized. (English) Zbl 1152.57020
Let \(M_1\) and \(M_2\) be closed connected orientable \(3\)-manifolds, and let \(H_i\) be a Heegaard surface of \(M_i\). Then the connected sum \(H=H_1\sharp H_2\) gives a Heegaard surface in \(M_1\sharp M_2\). If one of the \(H_i\) is stabilized, that is, the connected sum of some lower genus Heegaard surface and the standard genus one Heegaard surface of the \(3\)-sphere, then \(H\) is also stabilized. C. McA. Gordon, in Kirby’s problem list [Kazez, William H. (ed.), Geometric topology. 1993 Georgia international topology conference, August 2–13, 1993, Athens, GA, USA. Providence, RI: American Mathematical Society. AMS/IP Stud. Adv. Math. 2(pt.2), 35–473 (1997; Zbl 0888.57014)], conjectured that the converse is also true. The article under review gives a proof of this conjecture. (Independently, the same result is announced by Ruifeng Qiu.) In addition, it is shown that the prime decomposition of unstabilized Heegaard splittings is unique.
The proofs need a long and hard argument involving a sequence of generalized Heegaard splittings and a weak reduction process.

MSC:
57N10 Topology of general \(3\)-manifolds (MSC2010)
57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] D Bachman, Critical Heegaard surfaces, Trans. Amer. Math. Soc. 354 (2002) 4015 · Zbl 1003.57023 · doi:10.1090/S0002-9947-02-03018-0
[2] J S Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies 82, Princeton University Press (1974)
[3] F Bonahon, J P Otal, Scindements de Heegaard des espaces lenticulaires, Ann. Sci. École Norm. Sup. \((4)\) 16 (1983) · Zbl 0545.57002 · numdam:ASENS_1983_4_16_3_451_0 · eudml:82124
[4] A J Casson, C M Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987) 275 · Zbl 0632.57010 · doi:10.1016/0166-8641(87)90092-7
[5] J Cerf, Sur les difféomorphismes de la sphère de dimension trois \((\Gamma_4=0)\), Lecture Notes in Mathematics 53, Springer (1968) · Zbl 0164.24502 · doi:10.1007/BFb0060395
[6] R Engmann, Nicht-homöomorphe Heegaard-Zerlegungen vom Geschlecht 2 der zusammenhängenden Summe zweier Linsenräume, Abh. Math. Sem. Univ. Hamburg 35 (1970) 33 · Zbl 0202.54601 · doi:10.1007/BF02992472
[7] D Gabai, Foliations and the topology of 3-manifolds III, J. Differential Geom. 26 (1987) 479 · Zbl 0639.57008 · euclid:jdg/1214441487
[8] W Haken, Some results on surfaces in 3-manifolds, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.) (1968) 39 · Zbl 0194.24902
[9] R Kirby, editor, Problems in low-dimensional topology, AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35 · Zbl 0892.57013
[10] H A Masur, Y N Minsky, Geometry of the complex of curves II: Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902 · Zbl 0972.32011 · doi:10.1007/PL00001643
[11] Y Moriah, J Schultens, Irreducible Heegaard splittings of Seifert fibered spaces are either vertical or horizontal, Topology 37 (1998) 1089 · Zbl 0926.57016 · doi:10.1016/S0040-9383(97)00072-4
[12] R Qiu, Stabilizations of Reducible Heegaard Splittings · arxiv:0409497
[13] H Rubinstein, M Scharlemann, Comparing Heegaard splittings of non-Haken 3-manifolds, Topology 35 (1996) 1005 · Zbl 0858.57020 · doi:10.1016/0040-9383(95)00055-0
[14] M Scharlemann, Reconfiguring Qiu’s proof of the Gordon Conjecture · arxiv:0801.4581
[15] M Scharlemann, A Thompson, Thin position for 3-manifolds, Contemp. Math. 164, Amer. Math. Soc. (1994) 231 · Zbl 0818.57013
[16] J Schultens, The classification of Heegaard splittings for (compact orientable surface)\(\thinspace \times\thinspace S^1\), Proc. London Math. Soc. \((3)\) 67 (1993) 425 · Zbl 0789.57012 · doi:10.1112/plms/s3-67.2.425
[17] J Schultens, The stabilization problem for Heegaard splittings of Seifert fibered spaces, Topology Appl. 73 (1996) 133 · Zbl 0867.57013 · doi:10.1016/0166-8641(96)00030-2
[18] F Waldhausen, Heegaard-Zerlegungen der 3-Sphäre, Topology 7 (1968) 195 · Zbl 0157.54501 · doi:10.1016/0040-9383(68)90027-X
[19] R Weidmann, Generating tuples of free products, Bull. Lond. Math. Soc. 39 (2007) 393 · Zbl 1124.20016 · doi:10.1112/blms/bdm009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.