Maraaba, Thabet; Baleanu, Dumitru; Jarad, Fahd Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives. (English) Zbl 1152.81550 J. Math. Phys. 49, No. 8, 083507, 11 p. (2008). Authors’ summary: The existence and uniqueness theorems for functional right-left delay and left-right advanced fractional functional differential equations with bounded delay and advance, respectively, are proved. The continuity with respect to the initial function for these equations is also proved under some Lipschitz kind conditions. The Q-operator is used to transform the delay-type equation to an advanced one and vice versa. An example is given to clarify the results. Cited in 40 Documents MSC: 34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations 26A33 Fractional derivatives and integrals 34K05 General theory of functional-differential equations PDF BibTeX XML Cite \textit{T. Maraaba} et al., J. Math. Phys. 49, No. 8, 083507, 11 p. (2008; Zbl 1152.81550) Full Text: DOI References: [1] Samko S. G., Fractional Integrals and Derivatives–Theory and Applications (1993) · Zbl 0818.26003 [2] Podlubny I., Fractional Differential Equations (1999) · Zbl 0924.34008 [3] Kilbas A., Mathematics Studies 204, in: Theory and Applications of Fractional Differential Equations (2006) · doi:10.1016/S0304-0208(06)80001-0 [4] Zaslavsky G. M., Hamiltonian Chaos and Fractional Dynamics (2005) · Zbl 1083.37002 [5] Magin R. L., Fractional Calculus in Bioengineering (2006) [6] DOI: 10.1016/0960-0779(95)00125-5 · Zbl 1080.26505 · doi:10.1016/0960-0779(95)00125-5 [7] Kilbas A. A., Fractional Calculus Appl. Anal. 6 pp 363– (2003) [8] DOI: 10.1017/S0263574704001195 · doi:10.1017/S0263574704001195 [9] DOI: 10.1177/1077546307077467 · Zbl 1182.70047 · doi:10.1177/1077546307077467 [10] DOI: 10.1016/j.chaos.2007.01.047 · Zbl 1142.60392 · doi:10.1016/j.chaos.2007.01.047 [11] DOI: 10.1016/j.cma.2004.06.006 · Zbl 1119.65352 · doi:10.1016/j.cma.2004.06.006 [12] DOI: 10.1007/s00397-005-0043-5 · doi:10.1007/s00397-005-0043-5 [13] DOI: 10.1103/PhysRevE.53.1890 · doi:10.1103/PhysRevE.53.1890 [14] DOI: 10.1023/A:1013378221617 · Zbl 1064.70507 · doi:10.1023/A:1013378221617 [15] DOI: 10.1016/S0022-247X(02)00180-4 · Zbl 1070.49013 · doi:10.1016/S0022-247X(02)00180-4 [16] DOI: 10.1016/j.sigpro.2006.02.008 · Zbl 1172.94362 · doi:10.1016/j.sigpro.2006.02.008 [17] DOI: 10.1007/s10582-005-0067-1 · Zbl 1181.70017 · doi:10.1007/s10582-005-0067-1 [18] DOI: 10.1238/Physica.Regular.072a00119 · Zbl 1122.70360 · doi:10.1238/Physica.Regular.072a00119 [19] DOI: 10.1063/1.2356797 · Zbl 1112.81074 · doi:10.1063/1.2356797 [20] DOI: 10.1016/j.jmaa.2006.04.076 · Zbl 1104.70012 · doi:10.1016/j.jmaa.2006.04.076 [21] DOI: 10.1016/j.jmaa.2004.09.043 · Zbl 1149.70320 · doi:10.1016/j.jmaa.2004.09.043 [22] DOI: 10.1002/zamm.200710335 · Zbl 1131.34003 · doi:10.1002/zamm.200710335 [23] DOI: 10.1007/s11071-007-9281-7 · Zbl 1170.70328 · doi:10.1007/s11071-007-9281-7 [24] DOI: 10.1007/978-1-4684-9467-9 · doi:10.1007/978-1-4684-9467-9 [25] DOI: 10.1007/s11071-006-9094-0 · Zbl 1185.34115 · doi:10.1007/s11071-006-9094-0 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.