×

Synchronization of identical and non-identical 4-D chaotic systems using active control. (English) Zbl 1153.37359

Summary: This paper presents chaos synchronization between two identical Lorenz-Stenflo (LS) and a new four-dimensional chaotic system (Qi systems) by using active control technique. The designed controller ensures that the state variables of the controlled chaotic slave LS and Qi systems globally synchronizes with the state variables of the master systems respectively. It is also shown that Qi system globally synchronizes with LS system under the generalized active control. The results are validated using numerical simulations.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37N35 Dynamical systems in control
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Pecora, L.M.; Carroll, T.L., Synchronization of chaotic systems, Phys rev, 64, 821-824, (1990) · Zbl 0938.37019
[2] Pikovsky, A.S.; Rosenblum, M.G.; Kurths, J., Synchronization a universal concept in nonlinear sciences, (2001), Cambridge University Press Cambridge · Zbl 0993.37002
[3] Special Issue; Kurths, J., Phase synchronization and its applications, Int J bifurc chaos, 10-11, (2000)
[4] Kapitaniak, T., Controlling chaos: theoretical and practical methods in nonlinear dynamics, (1996), Academic Press London · Zbl 0883.58021
[5] Lakshmanan, M.; Murali, K., Chaos in nonlinear oscillators: controlling and synchronization, (1996), World Scientific Singapore · Zbl 0868.58058
[6] Kurths J, Boccaletti S, Grebogi C, Lai Y-C. Focus issue: control and synchronization in chaotic systems. Chaos;13:126-7.
[7] Zhang M, Wang X, Gong X, Wei GW, Lai C-H. Complete synchronization and generalized synchronization of one-way coupled time-delay systems. Phys Rev E;68:036208.
[8] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization in a population of globally coupled chaotic oscillators, Europhys lett, 34, 165-170, (1996)
[9] Pikovsky, A.; Rosenblum, M.G.; Osipov, G.V.; Kurths, J., Phase synchronization of chaotic oscillators by external driving, Physica D, 104, 219-238, (1997) · Zbl 0898.70015
[10] Rosenblum, M.; Pikovsky, A.; Kurths, J., Phase synchronization of chaotic oscillators, Phys rev lett, 76, 1804-1807, (1996)
[11] Osipov, G., Phase synchronization effects in a lattice of non-identical rossler attractors, Phys rev E, 55, 2353-2361, (1997) · Zbl 0900.92178
[12] Rulkov, N.F.; Sushchik, M.M.; Tsimiring, L.S.; Abarbanel, H.D.I., Generalized synchronization in directionally coupled dynamical systems, Phys rev E, 51, 980-994, (1995)
[13] Kocarev, L.; Parlitz, U., Generalized synchronization, predictability and equivalent of unidirectionally coupled dynamical systems, Phys rev lett, 76, 1816-1819, (1996)
[14] Rosemblum, M.G.; Pikovsky, A.S.; Kurths, J., From phase to lag synchronization in coupled chaotic oscillators, Phys rev lett, 78, 4193-4196, (1997)
[15] Vincent UE, Njah AN, Akinlade O, Solarin ART. Phase Synchronization in unidirectionally coupled chaotic ratchets. Chaos;14:1018-25. · Zbl 1080.37039
[16] Kim, C.-M.; Rim, S.; Kye, W.-H., Sequential synchronization of chaotic system with application to communication, Phys rev lett, 88, 014103, (2002)
[17] Bai, E.W.; Lonngren, K.E., Sequential synchronization of two Lorenz systems using active control, Chaos, solitons & fractals, 11, 1041-1044, (2000) · Zbl 0985.37106
[18] Vincent, U.E.; Njah, A.N.; Akinlade, O.; Solarin, A.R.T., Phase synchronization in bi-directionally coupled chaotic ratchets, Physica A, 360, 186-196, (2006) · Zbl 1080.37039
[19] Sarasola, S.; Torredea, F.J.; D’anjou, A., Feed-back synchronization of chaotic systems, Int J bifurc chaos, 13, 177-191, (2003) · Zbl 1056.37038
[20] Liao, X., Chaos synchronization of general lur’e systems via time-delay feed-back control, Int J bifurc chaos, 13, 207-213, (2003) · Zbl 1129.93509
[21] Liao, T.L., Adaptive synchronization of two Lorenz systems, Chaos, solitons & fractals, 9, 1555-1561, (1998) · Zbl 1047.37502
[22] Liao, T.L.; Tsai, S.H., Adaptive synchronization of chaotic systems and its application to secure communications, Chaos, solitons & fractals, 11, 1387-1396, (2000) · Zbl 0967.93059
[23] Fotsin, H.B.; Woafo, P., Adaptive synchronization of a modified and uncertain chaotic Van der pol – duffing oscillator based on parameter identification, Chaos, solitons & fractals, 24, 1363-1371, (2005) · Zbl 1091.70010
[24] Tan, X.H.; Zhang, T.Y.; Yang, Y.R., Synchronizing chaotic systems using backstepping design, Chaos, solitons & fractals, 16, 37-45, (2003) · Zbl 1035.34025
[25] Yu, Y.; Zhang, S., Adaptive backstepping synchronization of uncertain chaotic systems, Chaos, solitons & fractals, 21, 643-649, (2004) · Zbl 1062.34053
[26] Zhang, J.; Li, C.; Zhang, H.; Yu, Y., Chaos synchronization using single variable feed-back based on backsepping method, Chaos, solitons & fractals, 21, 1183-1193, (2004) · Zbl 1129.93518
[27] Zhang, H.; Ma, X.-K.; Liu, W.-Z., Synchronization of chaotic systems with parametric uncertainty using active sliding mode control, Chaos, solitons & fractals, 21, 1249-1257, (2004) · Zbl 1061.93514
[28] Bai, E.W.; Lonngren, K.E., Synchronization of two Lorenz systems using active control, Chaos, solitons & fractals, 8, 51-58, (1997) · Zbl 1079.37515
[29] Agiza, H.N.; Yassen, M.T., Synchronization of rossler and Chen dynamical systems using active control, Phys lett A, 278, 191-197, (2001) · Zbl 0972.37019
[30] Ho, M.-C.; Hung, Y.-C.; Chou, C.-H., Phase and anti-phase synchronization of two chaotic systems by using active control, Phys lett A, 296, 43-48, (2002) · Zbl 1098.37529
[31] Codreanu, S., Synchronization of spatiotemporal nonlinear dynamical systems by an active control, Chaos, solitons & fractals, 15, 507-510, (2003) · Zbl 1098.93509
[32] Ho, M.-C.; Hung, Y.-C., Synchronization of two different systems by using generalized active control, Phys lett A, 301, 424-428, (2002) · Zbl 0997.93081
[33] Yassen, M.T., Chaotic synchronization between two different chaotic systems using active control, Chaos solitons & fractals, 23, 131-140, (2005) · Zbl 1091.93520
[34] Chen, H.-K., Synchronization of two different chaotic systems: a new system and each of the dynamical systems Lorenz, Chen and Liu, Chaos, solitons & fractals, 25, 1049-1056, (2005) · Zbl 1198.34069
[35] Vincent, U.E., Synchronization of Rikitake chaotic attractor using active control, Phys lett A, 343, 133-138, (2005) · Zbl 1194.34091
[36] Yan, J.; Li, C., Generalized projective synchronization of a unified chaotic system, Chaos, solitons & fractals, 26, 1119-1124, (2005) · Zbl 1073.65147
[37] Stenflo, L., Generalized Lorenz equations for acoustic-gravity waves in the atmosphere, Physica scr, 53, 83-84, (1996)
[38] Zhaou, C.; Lai, C.H.; Yu, M.Y., Bifurcation behaviour of the generalized Lorenz equations at large rotation numbers, J math phys, 38, 5225-5239, (1997) · Zbl 0897.76038
[39] Liu, Z., The first integral of nonlinear acoustic gravity wave equation, Physica scr, 61, 526, (2000)
[40] Banerjee, S.; Saha, P.; Chowdhury, A.R., Chaotic scenerio in the stenflo equations, Physica scr, 63, 177-180, (2001) · Zbl 1115.37366
[41] Banerjee, S.; Saha, P.; Chowdhury, A.R., On the application of adaptive control and phase synchronization in nonlinear fluid dynamics, Int J nonlinear mech, 39, 25-31, (2004) · Zbl 1225.76137
[42] Qi, G.; Chen, Z.; Du, S.; Yuan, Z., On a four-dimensional chaotic system, Chaos, solitons & fractals, 23, 1671-1682, (2005) · Zbl 1071.37025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.