×

Extreme points, exposed points, differentiability points in CL-spaces. (English) Zbl 1153.46009

A Banach space is said to be an almost CL-space if its unit ball is the closed absolutely convex hull of every maximal convex subset of its unit sphere [Å.Lima, Ann.Inst.Fourier 28, No.3, 35–65 (1978; Zbl 0347.46018)].
In the present paper, the authors characterize Gâteaux differentiability points and Fréchet differentiability points of the norm of real almost CL-spaces.

MSC:

46B20 Geometry and structure of normed linear spaces
46B04 Isometric theory of Banach spaces
46G05 Derivatives of functions in infinite-dimensional spaces

Citations:

Zbl 0347.46018
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] María D. Acosta, CL-spaces and numerical radius attaining operators, Extracta Math. 5 (1990), no. 3, 138 – 140. · Zbl 0743.47026
[2] Yoav Benyamini and Joram Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000. · Zbl 0946.46002
[3] James A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396 – 414. · Zbl 0015.35604
[4] Robert Deville, Gilles Godefroy, and Václav Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. · Zbl 0782.46019
[5] Joseph Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. · Zbl 0542.46007
[6] Joseph Diestel, Geometry of Banach spaces — selected topics, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975. · Zbl 0307.46009
[7] J. Diestel and J. J. Uhl Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. · Zbl 0369.46039
[8] R. E. Fullerton, Geometrical characterizations of certain function spaces, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960) Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961, pp. 227 – 236.
[9] Gilles Godefroy, Renormings of Banach spaces, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 781 – 835. · Zbl 1009.46003 · doi:10.1016/S1874-5849(01)80020-6
[10] Allan B. Hansen and Åsvald Lima, The structure of finite-dimensional Banach spaces with the 3.2. intersection property, Acta Math. 146 (1981), no. 1-2, 1 – 23. · Zbl 0484.46017 · doi:10.1007/BF02392457
[11] Richard B. Holmes, Geometric functional analysis and its applications, Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 24. · Zbl 0336.46001
[12] Vasile I. Istrăţescu, Strict convexity and complex strict convexity, Lecture Notes in Pure and Applied Mathematics, vol. 89, Marcel Dekker, Inc., New York, 1984. Theory and applications. · Zbl 0538.46012
[13] W. B. Johnson and J. Lindenstrauss , Handbook of the geometry of Banach spaces. Vol. I, North-Holland Publishing Co., Amsterdam, 2001. · Zbl 0970.46001
[14] Asvald Lima, Intersection properties of balls in spaces of compact operators, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 3, v, 35 – 65. · Zbl 0347.46018
[15] Ginés López, Miguel Martín, and Rafael Payá, Real Banach spaces with numerical index 1, Bull. London Math. Soc. 31 (1999), no. 2, 207 – 212. · Zbl 0921.46015 · doi:10.1112/S002460939800513X
[16] Miguel Martín, A survey on the numerical index of a Banach space, Extracta Math. 15 (2000), no. 2, 265 – 276. III Congress on Banach Spaces (Jarandilla de la Vera, 1998). · Zbl 0980.46006
[17] Miguel Martín, Banach spaces having the Radon-Nikodým property and numerical index 1, Proc. Amer. Math. Soc. 131 (2003), no. 11, 3407 – 3410. · Zbl 1043.46019
[18] Miguel Martín and Rafael Payá, On CL-spaces and almost CL-spaces, Ark. Mat. 42 (2004), no. 1, 107 – 118. · Zbl 1057.46020 · doi:10.1007/BF02432912
[19] R. R. Phelps, Some topological properties of support points of convex sets, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), 1972, pp. 327 – 336 (1973). · Zbl 0252.46020 · doi:10.1007/BF02762808
[20] Robert R. Phelps, Convex functions, monotone operators and differentiability, Lecture Notes in Mathematics, vol. 1364, Springer-Verlag, Berlin, 1989. · Zbl 0658.46035
[21] S. Dutta and T. S. S. R. K. Rao, On weak*-extreme points in Banach spaces, J. Convex Anal. 10 (2003), no. 2, 531 – 539. · Zbl 1067.46016
[22] S. Reisner, Certain Banach spaces associated with graphs and CL-spaces with 1-unconditional bases, J. London Math. Soc. (2) 43 (1991), no. 1, 137 – 148. · Zbl 0757.46030 · doi:10.1112/jlms/s2-43.1.137
[23] Walter Rudin, Functional analysis, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics. · Zbl 0253.46001
[24] Cong Xin Wu and Li Xin Cheng, A note on the differentiability of convex functions, Proc. Amer. Math. Soc. 121 (1994), no. 4, 1057 – 1062. · Zbl 0806.46044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.