zbMATH — the first resource for mathematics

Blow up, global existence, and infinite propagation speed for the weakly dissipative Camassa-Holm equation. (English) Zbl 1153.81368
Summary: In this paper, we consider the weakly dissipative Camassa-Holm equation. First, we try to improve other authors’ results and get some new criterion on blow up, then discuss the global existence of the solution. Finally, we intend to establish sufficient conditions on the propagation speed for the weakly dissipative Camassa-Holm equation.

35Q53 KdV equations (Korteweg-de Vries equations)
35B40 Asymptotic behavior of solutions to PDEs
35B44 Blow-up in context of PDEs
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
Full Text: DOI
[1] DOI: 10.1103/PhysRevLett.71.1661 · Zbl 0972.35521
[2] DOI: 10.1016/S0065-2156(08)70254-0
[3] DOI: 10.1006/jdeq.1997.3333 · Zbl 0889.35022
[4] DOI: 10.1007/BF02392586 · Zbl 0923.76025
[5] DOI: 10.1006/jdeq.1999.3695 · Zbl 0945.35073
[6] Himonas A., Diff. Integral Eq. 14 pp 821– (2001)
[7] DOI: 10.1007/s00220-006-0172-4 · Zbl 1142.35078
[8] Li Y., J. Electrost. 162 pp 27– (2000)
[9] DOI: 10.1007/PL00012648 · Zbl 1158.37311
[10] DOI: 10.1016/S0362-546X(01)00791-X · Zbl 0980.35150
[11] Whitham G. B., Linear and Nonlinear Waves (1974) · Zbl 0373.76001
[12] DOI: 10.1063/1.2158437 · Zbl 1111.35067
[13] DOI: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5 · Zbl 1048.35092
[14] DOI: 10.1081/PDE-120016129 · Zbl 1034.35115
[15] DOI: 10.1016/j.na.2004.02.004 · Zbl 1106.35070
[16] DOI: 10.1016/j.jmaa.2003.10.017 · Zbl 1042.35060
[17] DOI: 10.1016/j.jfa.2007.04.019 · Zbl 1124.35079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.