zbMATH — the first resource for mathematics

Local models-an approach to distributed multi-objective optimization. (English) Zbl 1153.90530
Summary: When solving real-world optimization problems, evolutionary algorithms often require a large number of fitness evaluations in order to converge to the global optima. Attempts have been made to find techniques to reduce the number of fitness function evaluations. We propose a novel framework in the context of multi-objective optimization where fitness evaluations are distributed by creating a limited number of adaptive spheres spanning the search space. These spheres move towards the global Pareto front as components of a swarm optimization system. We call this process localization. The contribution of the paper is a general framework for distributed evolutionary multi-objective optimization, in which the individuals in each sphere can be controlled by any existing evolutionary multi-objective optimization algorithm in the literature.

90C29 Multi-objective and goal programming
90C59 Approximation methods and heuristics in mathematical programming
PDF BibTeX Cite
Full Text: DOI
[1] Abbass, H.A., Sarker, R., Newton, C.: PDE: A Pareto frontier differential evolution approach for multiobjective optimization problems. In: Proceedings of the Congress on Evolutionary Computation, vol. 2, pp. 971–978. IEEE Service Center, Piscataway (2001)
[2] Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic, Boston (2002) · Zbl 1047.68160
[3] Branke, J., Schmeck, H., Deb, K., Maheshwar, R.S.: Parallelizing multiobjective evolutionary algorithms: cone separation. In: Proceedings of the Congress on Evolutionary Computation, pp. 1952–1957. IEEE Press, New York (2004)
[4] Buche, D., Schraudolph, N.N., Koumoutsakos, P.: Accelerating evolutionary algorithms with gaussian process fitness function models. IEEE Trans. Syst. Man Cybern. C: Appl. Rev. 35(2), 183–194 (2005)
[5] Cantu-Paz, E.: A survey of parallel genetic algorithms. Technical Report IlliGal, TR-97003, University of Illinois, Urbana–Champaign, 1997
[6] Cantu-Paz, E.: Migration policies, selection pressure and parallel evolutionary algorithms. Technical Report IlliGal TR-99015, University of Illinois, Urbana–Champaign, 1999
[7] Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic, Boston (2000) · Zbl 0963.68164
[8] Coello, C.A.C.: Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput. Intell. Mag. 1(1), 28–36 (2006)
[9] Coello, C.A.C., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic, New York (2002) · Zbl 1130.90002
[10] Deb, K.: Multiobjective Optimization Using Evolutionary Algorithms. Wiley, New York (2001) · Zbl 0970.90091
[11] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002) · Zbl 05451853
[12] Deb, K., Zope, P., Jain, A.: Distributed computing of Pareto optimal solutions with evolutionary algorithms. In: Evolutionary Multi-Criterion Optimization (2003) · Zbl 1036.90526
[13] Eberhart, R.C., Shi, Y.: Particle swarm optimization: developments, applications and resources. In: Proceedings of the Congress on Evolutionary Computation, pp. 81–86. IEEE Press, New York (2001)
[14] Elmihoub, T., Hopgood, A.A., Nolle, L., Battersby, A.: Performance of hybrid genetic algorithms incorporating local search. In: Proceedings of 18th European Simulation Multiconference, pp. 154–160. Magdeburg, Germany (2004)
[15] Streichert, F., Ulmer, H., Zell, A.: Parallelization of multiobjective evolutionary algorithms using clustering algorithms. In: Evolutionary Multi-Criterion Optimization, pp. 92–107 (2005) · Zbl 1109.68637
[16] Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Kluwer Academic, Boston (2002) · Zbl 1047.68162
[17] Hart, W.E.: Adaptive global optimization with local search. Ph.D. thesis, University of California, San Diego, CA, USA (1994)
[18] Hiroyasu, T., Miki, M., Wantanabe, S.: The new model of parallel genetic algorithm in multiobjective optimization problems- divided range multi-objective genetic algorithm. In: Proceedings of the Congress on Evolutionary Computation, pp. 333–340. IEEE Press, New York (2000)
[19] Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans. Evol. Comput. 7(2), 204–223 (2003) · Zbl 05452017
[20] Jaimes, A.L., Coello, C.A.C.: MRMOGA: parallel evolutionary multiobjective optimization using multiple resolutions. In: Corne, D. (ed.) Proceedings of the Congress on Evolutionary Computation, pp. 2294–2301. IEEE Press, New York (2005)
[21] Jaszkiewicz, A.: Genetic local search for multi-objective combinatorial optimization. Eur. J. Oper. Res. 137(1), 50–71 (2002) · Zbl 1002.90051
[22] Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments–a survey. IEEE Trans. Evol. Comput. 9(3), 303–317 (2005) · Zbl 05452035
[23] KanGal. Kangal laboratory website. http://www.iitk.ac.in/kangal/codes.shtml .
[24] Tasoulis, D.K., Parsopoulos, K.E., Vrahatis, M.N.: Multiobjective optimization using parallel vector evaluated particle swarm optimization. In: Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, vol. 2, pp. 823–828. ACTA Press, Innsbruck (2004)
[25] Knowles, J.D., Corne, D.: M-PAES: A memetic algorithm for multi-objective optimization. In: Proceedings of the Congress on Evolutionary Computation, pp. 325–332. IEEE Press, New York (2000)
[26] Lobo, E.G., Goldberg, D.E.: Decision making in a hybrid genetic algorithm. Technical report, Department of General Engineering, University of Illinois at Urbana–Champaign, 1996
[27] Parsopoulos, K.E., Vrahatis, M.N.: Recent approaches to global optimization problems through particle swarm optimization. Nat. Comput. 1(2–3), 235–306 (2002) · Zbl 1018.68063
[28] Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Genetic Algorithms and Their Applications: Proceedings of the First International Conference on Genetic Algorithms, Hillsdale, New Jersey, 1985, pp. 93–100
[29] Schott, J.R.: Fault tolerant design using single and multicriteria genetic algorithm optimization. Master’s thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology (1995)
[30] Tan, K.C., Yang, Y.J., Goh, C.K.: A distributed cooperative coevolutionary algorithm for multi-objective optimization. IEEE Trans. Evol. Comput. 10(5), 527–549 (2006) · Zbl 05452155
[31] Tan, K.C., Yang, Y.J., Lee, T.H.: Designing a distributed cooperative coevolutionary algorithm for multiobjective optimization. In: Proceedings of the Congress on Evolutionary Computation, pp. 2513–2520. IEEE Press, New York (2003)
[32] Tan, K.C., Lee, T.H., Khor, E.F.: Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization. IEEE Trans. Evol. Comput. 5(6), 565–588 (2001) · Zbl 05452163
[33] Van Veldhuizen, D.A.: Multiobjective evolutionary algorithms: classifications, analyses, and new innovations. Ph.D. thesis, Air Force Institute of Technology, Dayton OH, USA (1999)
[34] Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary computation and convergence to a Pareto front. In: Koza, J.R., et al. (eds.) Genetic Programming Conference 1998, pp. 221–228 (1998)
[35] Van Veldhuizen, D.A., Zydallis, J.B., Lamont, G.B.: Considerations in engineering parallel multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 7(2), 144–173 (2003) · Zbl 05452176
[36] Zhu, Z.-Y., Leung, K.-S.: Asynchronous self-adjustable island genetic algorithm for multi-objective optimization problems. In: Proceedings of the Congress on Evolutionary Computation, pp. 837–842. IEEE Press, New York (2002)
[37] Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm. Technical report, Swiss Federal Institute of Technology (2001)
[38] Zitzler, E., Thiele, L.: Multi-objective optimization using evolutionary algorithms–a comparative case study. In: Parallel Problem Solving from Nature, pp. 292–301. Springer, Berllin (1998)
[39] Zitzler, E., Thiele, L., Deb, K.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(1), 173–195 (2000) · Zbl 05412936
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.