×

zbMATH — the first resource for mathematics

Multiple-soliton solutions for the Calogero-Bogoyavlenskii-Schiff, Jimbo-Miwa and YTSF equations. (English) Zbl 1154.65366
Summary: We employ the Hirota’s bilinear method [the author, Appl. Math. Comput. 196, No. 1, 363–370 (2008; Zbl 1133.65087)] to derive multiple-front solutions for nonlinear evolution equations. Three models, namely, the (2 + 1)-dimensional Calogero-Bogoyavlenskii-Schiff equation, the (3 + 1)-dimensional Jimbo-Miwa equation, and the (3 + 1)-dimensional potential YTSF equation, are used as vehicles to conduct the analysis. The work shows the power of the bilinear method and the variety of the obtained front solutions.

MSC:
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Wazwaz, A.M., New solutions of distinct physical structures to high-dimensional nonlinear evolution equations, Appl. math. comput., 196, 363-370, (2008) · Zbl 1133.65087
[2] Peng, Y., New types of localized coherent structures in the bogoyavlenskii – schiff equation, Int. J. theor. phys., 45, 9, 1779-1783, (2006) · Zbl 1119.81066
[3] Kobayashi, T.; Toda, K., The PainlevĂ© test and reducibility to the canonical forms for higher-dimensional soliton equations with variable-coefficients, Symm. integr. geom.: meth. appl., 2, 1-10, (2006) · Zbl 1134.37358
[4] Bruzon, M.S.; Gandarias, M.L.; Muriel, C.; Ramierez, J.; Saez, S.; Romero, F.R., The calogero – bogoyavlenskii – schiff equation in 2+1 dimensions, Theor. math. phys., 137, 1, 1367-1377, (2003) · Zbl 1178.35113
[5] Yu, S.J.; Toda, K.; Sasa, N.; Fukuyama, T., N soliton solutions to the bogoyavlenskii – schiff equation and a quest for the soliton solution in (3+1) dimensions, J. phys. A: math. gen., 31, 3337-3347, (1998) · Zbl 0927.35102
[6] Tang, X.Y.; Liang, Z.F., Variable separation solutions for the (3+1)-dimensional jimbo – miwa equation, Phys. lett. A, 351, 398-402, (2006) · Zbl 1187.37099
[7] Hu, X.-B.; Wang, D.-L.; Tam, H.-W.; Xue, W.-M., Soliton solutions to the jimbo – miwa equation and the fordy – gibbons – jimbo – miwa equation, Phys. lett. A, 262, 310-320, (1999) · Zbl 0937.35153
[8] Liu, X.-Q.; Jiang, S., New solutions of the (3+1)-dimensional jimbo – miwa equation, Appl. math. comput., 158, 177-184, (2004) · Zbl 1061.35082
[9] Wang, D.; Sun, W.; Kong, C.; Zhang, H., New extended rational expansion method and exact solutions of Boussinesq equation and jimbo – miwa equations, Appl. math. comput., 189, 878-886, (2007) · Zbl 1122.65396
[10] Kichenassamy, S.; Olver, P., Existence and nonexistence of solitary wave solutions to higher-order model evolution equations, SIAM J. math. anal., 23, 5, 1141-1166, (1992) · Zbl 0755.76023
[11] Hereman, W.; Zhuang, W., A MACSYMA program for the Hirota method, 13th world congress comput. appl. math., 2, 842-863, (1991)
[12] Malfliet, W.; Hereman, W., The tanh method: I. exact solutions of nonlinear evolution and wave equations, Physica scripta, 54, 563-568, (1996) · Zbl 0942.35034
[13] Malfliet, W.; Hereman, W., The tanh method: II. perturbation technique for conservative systems, Physica scripta, 54, 569-575, (1996) · Zbl 0942.35035
[14] Wazwaz, A.M., Partial differential equations: methods and applications, (2002), Balkema Publishers The Netherlands · Zbl 0997.35083
[15] Wazwaz, A.M., Compactons in a class of nonlinear dispersive equations, Math. comput. model., 37, 3/4, 333-341, (2003) · Zbl 1044.35078
[16] Wazwaz, A.M., Distinct variants of the KdV equation with compact and noncompact structures, Appl. math. comput., 150, 365-377, (2004) · Zbl 1039.35110
[17] Wazwaz, A.M., New solitons and kinks solutions to the sharma – tasso – olver equation, Appl. math. comput., 188, 1205-1213, (2007) · Zbl 1118.65113
[18] Wazwaz, A.M., New solitary wave and periodic wave solutions to the (2+1)-dimensional nizhnik – novikov – veselov system, Appl. math. comput., 187, 1584-1591, (2007) · Zbl 1114.65354
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.