Predicting the Hall-Petch effect in fcc metals using non-local crystal plasticity. (English) Zbl 1154.74007

Summary: Many conventional continuum approaches to solid mechanics do not address the size sensitivity of deformation to microstructural features like grain boundaries, and are therefore unable to capture much of the experimentally observed behavior of polycrystal deformation. We propose a non-local crystal plasticity model, in which the geometrically necessary dislocation (GND) density is calculated using a non-local integral approach. The model is based on augmented \(\mathbf F^{\mathbf e}\mathbf F^{\mathbf p}\) kinematics, which account for the initial microstructure (primarily grain boundaries) present in the polycrystal. With the augmented kinematics, the initial GND and the evolving GND state are determined in a consistent manner. The expanded kinematics and the non-local crystal plasticity model are used to simulate the tensile behavior in copper polycrystals with different grain sizes ranging from \(14\, \mu \)m to \(244\, \mu \)m. The simulation results show a grain size dependence on the polycrystal’s yield strength, which are in good agreement with the experimental data.


74C99 Plastic materials, materials of stress-rate and internal-variable type
74E15 Crystalline structure
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI


[1] Armstrong, R. W.: The yield and flow stress dependence on polycrystal and grain size, Yield, flow and fracture of polycrystals, 1-31 (1983)
[2] Asaro, R. J.: Crystal plasticity, J. appl. Mech. 50, 921-934 (1983) · Zbl 0557.73033
[3] Ashby, M. F.: The deformation of plastically non-homogeneous materials, Philos. mag. 21, 399-424 (1970)
[4] Baldwin, W. M.: Yield strength of metals as a function of grain size, Acta metall. 6, 139-141 (1958)
[5] Bazant, Z. P.; Jirsuk, M.: Nonlocal integral formulations of plasticity and damage: survey of progress, J. eng. Mech. 128, 1119-1149 (2002)
[6] Bazant, Z. P.; Lin, F. B.: Non-local yield limit degradation, Int. J. Numer. methods eng. 26, 1805-1823 (1988) · Zbl 0661.73041
[7] Biffle, J.H., 1987. A three-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method. sand87-1305. Sandia National Laboratories, Albuquerque, NM.
[8] Bilby, B. A.; Bullough, R.; Smith, E.: Continuous distributions of dislocations: a new application of methods of non-Riemannian geometry, Proc. R. Soc. lond. A 231, 263-273 (1955)
[9] Brenner, S. S.: Tensile strength of whiskers, J. appl. Phys. 27, 1484-1491 (1956)
[10] Cermelli, P.; Gurtin, M. E.: On the characterization of geometrically necessary dislocations in finite plasticity, J. mech. Phys. solids 49, 1539-1568 (2001) · Zbl 0989.74013
[11] Cheng, S.; Spencer, J. A.; Milligan, W. W.: Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals, Acta mater. 51, 4505-4518 (2003)
[12] Cheong, K. S.; Busso, E. P.; Arsenlis, A.: A study of microstructural length scale effects on the behaviour of FCC polycrystals using strain gradient concepts, Int. J. Plast. 21, 1797-1814 (2005) · Zbl 1114.74371
[13] Clayton, J. D.; Mcdowell, D. L.; Bammann, D. J.: Modeling dislocations and disclinations with finite micropolar elastoplasticity, Int. J. Plast. 22, 210-256 (2006) · Zbl 1101.74018
[14] Coleman, B. D.; Gurtin, M. E.: Thermodynamics with internal state variables, J. chem. Phys. 47, 597-613 (1967)
[15] Coleman, B. D.; Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity, Arch. rat. Mech. anal. 13, 167-178 (1963) · Zbl 0113.17802
[16] Counts, W. A.; Braginsky, M. V.; Battaile, C. C.; Holm, E. A.: Polycrystalline kinematics: an extension of single crystal kinematics that incorporates initial microstructure, Int. J. Solid struct. 44, 5742-5751 (2007) · Zbl 1122.74011
[17] Evers, L. P.; Brekelmans, W. A. M.; Geers, M. G. D.: Scale dependent crystal plasticity framework with dislocation density and grain boundary effects, Int. J. Solid struct. 41, 5209-5230 (2004) · Zbl 1075.74020
[18] Fernandes, J. V.; Vieira, M. F.: Further development of the hybrid model for polycrystal deformation, Acta mater. 48, 1919-1930 (2000)
[19] Flanagan, D. P.; Belytschko, T.: A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Int. J. Numer. meth. Eng. 17, 597-609 (1981) · Zbl 0478.73049
[20] Fleck, N. A.; Muller, G. M.; Ashby, M. F.; Hutchinson, J. W.: Strain gradient plasticity: theory and experiment, Acta metall. Mater. 42, 475-487 (1994)
[21] Follstaedt, D. M.; Knapp, J. A.; Myers, S. M.: Strengthening by high densities of nanometer-size precipitates: oxides in ni, Metall. mater. Trans. A 34, 935-949 (2003)
[22] Gao, H.; Huang, Y.: Taylor-based nonlocal theory of plasticity, Int. J. Solid struct. 38, 2615-2637 (2001) · Zbl 0977.74009
[23] Hall, E. O.: The deformation and ageing of mild steel: III. Discussion of results, Phys. soc. Lond. 64, 747-753 (1951)
[24] Hansen, N.: Flow stress and grain size dependence of non-ferrous metals and alloys, Yield, flow and fracture of polycrystals, 311-350 (1983)
[25] Hill, R.; Rice, J. R.: Constitutive analysis of elastic – plastic crystals at arbitrary strain, J. mech. Phys. solids 20, 401-413 (1972) · Zbl 0254.73031
[26] Hirth, J. P.: The influence of grain boundaries on mechanical properties, Metall. trans. 3, 3047-3067 (1972)
[27] Hook, R. E.; Hirth, J. P.: Deformation behavior of isoaxial bicrystals of fe-3 percent si, Acta metall. 15, 535-551 (1967)
[28] Hutchinson, J. W.: Bounds and self-consistent estimates for creep of polycrystalline materials, Proc. R. Soc. lond. A 348, 101-127 (1976) · Zbl 0319.73059
[29] Kocks, U. F.: The relation between polycrystal deformation and single-crystal deformation, Metall. trans. 1, 1121-1143 (1970)
[30] Lee, E. H.: Elastic – plastic deformation at finite strains, J. appl. Mech. 36, 1-6 (1969) · Zbl 0179.55603
[31] Li, J. C. M.: Petch relation and grain boundary sources, Trans. AIME 227, 239-247 (1963)
[32] Mackenzie, J. K.: Second paper on statistics associated with the random disorientation of cubes, Biometrika 45, 229-240 (1958) · Zbl 0084.36402
[33] Malvern, L. E.: Introduction to the mechanics of a continuum media, (1969) · Zbl 0181.53303
[34] Mecking, H.; Kocks, U. F.: Kinetics of flow and strain hardening, Acta metall. 29, 1865-1875 (1981)
[35] Petch, N. J.: The cleavage strength of polycrystals, J. iron steel inst. 174, 25-28 (1953)
[36] Rice, J. R.: Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity, J. mech. Phys. solids 19, 433-455 (1971) · Zbl 0235.73002
[37] Soer, W. A.; Aifantis, K. E.; De Hosson, J. Th.M.: Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic metals, Acta mater. 53, 4665-4676 (2005)
[38] Soifer, Ya.M.; Verdyan, A.; Kazakevich, M.; Rabkin, E.: Nanohardness of copper in the vicinity of grain boundaries, Scripta mater. 47, 799-804 (2002)
[39] Stolken, J. S.; Evans, A. G.: A microbend test method for measuring the plasticity length scale, Acta mater. 46, 5109-5115 (1998)
[40] Stromberg, L.; Ristinmaa, M.: FE-formulation of a nonlocal plasticity theory, Comput. methods appl. Mech. eng. 136, 127-144 (1996) · Zbl 0918.73118
[41] Taylor, G. I.: Mechanism of plastic deformation of crystals. Part I. – theoretical, Proc. R. Soc. lond. A 145, 362-387 (1934) · JFM 60.0712.02
[42] Thompson, A. W.; Baskes, M. I.: The influence of grain size on the work hardening of face-centered cubic polycrystals, Philos. mag. 30, 301-308 (1973)
[43] Thompson, A. W.; Baskes, M. I.; Flanagan, W. F.: The dependence of polycrystal work hardening on grain size, Acta metall. 21, 1017-1028 (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.