×

zbMATH — the first resource for mathematics

Analytic solution for MHD transient rotating flow of a second grade fluid in a porous space. (English) Zbl 1154.76391
Summary: This article looks into the unsteady rotating magnetohydrodynamic (MHD) flow of an incompressible second grade fluid in a porous half space. The flow is induced by a suddenly moved plate in its own plane. Both the fluid and plate rotate in unison with the same angular velocity. Analytic solution of the governing flow problem is obtained by using Fourier sine transform. Based on the modified Darcy’s law, expression for velocity is obtained. The influence of pertinent parameters on the flow is delineated and appropriate conclusions are drawn. Several existing solutions of Newtonian fluid have been also deduced as limiting cases.

MSC:
76W05 Magnetohydrodynamics and electrohydrodynamics
76S05 Flows in porous media; filtration; seepage
76A05 Non-Newtonian fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Asghar, S.; Khan, M.; Siddiqui, A.M.; Hayat, T., Exact solutions for magnetohydrodynamic flow in a rotating fluid, Acta mech. sinica, 28, 3, 244-251, (2002)
[2] Ariel, P.D., On exact solution of flow problems of a second grade fluid through two parallel plates, Int. J. eng. sci., 40, 913-941, (2002) · Zbl 1211.76016
[3] Asghar, S.; Hanif, K.; Hayat, T.; Khalique, C.M., MHD non-Newtonian flow due to non-coaxial rotations of an accelerated disk and a fluid at infinity, Comm. nonlinear sci. numer. simul., 12, 465-485, (2007) · Zbl 1110.35311
[4] Benton, E.R.; Loper, D.E., On the spin-up of an electrically conducting fluid, J. fluid mech. part 1, 39, 561-586, (1969)
[5] Bandelli, R.; Rajagopal, K.R.; Goldi, G.P., On some unsteady motions of fluids of second grade, Arch. mech., 47, 4, 661-670, (1995) · Zbl 0835.76002
[6] Bandelli, R.; Rajagopal, K.R., Start-up flows of second grade fluids in domains with one finite dimension, Int. J. non-linear mech., 30, 517-539, (1995) · Zbl 0866.76004
[7] Chawala, S.S., On hydromagnetic spin-up, J. fluid mech. part 3, 53, 545-555, (1972) · Zbl 0249.76072
[8] Chen, C.I.; Chen, C.K.; Yang, Y.T., Unsteady unidirectional flow of a second grade fluid between the parallel plates with different given volume flow rate conditions, Appl. maths. comput., 137, 2, 437-450, (2003) · Zbl 1102.76304
[9] Debnath, L., On unsteady magnetohydrodynamic boundary layers in a rotating flow, Z. angew. math. mech., 52, 623-626, (1972) · Zbl 0257.76098
[10] Debnath, L., Resonant oscillations of a porous plate in an electrically conducting rotating viscous fluid, Phys. fluid., 17, 9, 1704-1706, (1974) · Zbl 0297.76088
[11] Debnath, L.; Ray, S.C.; Chatterjee, A.K., Effects of Hall current on unsteady hydromagnetic flow past a porous plate in a rotating fluid system, Z. angew. math. mech., 59, 469-471, (1979) · Zbl 0437.76097
[12] Dunn, J.E.; Rajagopal, K.R., Fluids of differential type: critical review and thermodynamic analysis, Int. J. eng. sci., 33, 689-729, (1995) · Zbl 0899.76062
[13] Fetecau, C.; Fetecau, C., Starting solutions for the motion of a second grade fluid due to longitudinal and torsional oscillations of a circular cylinder, Int. J. eng. sci., 44, 788-796, (2006) · Zbl 1213.76014
[14] Fetecau, C.; Fetecau, C., The rayleigh – stokes problem for heated second grade fluids, Int. J. non-linear mech., 37, 1011-1015, (2002) · Zbl 1346.76027
[15] Fetecau, C.; Zierep, J., On a class of exact solutions of the equations of motion of a second grade fluid, Acta mech., 150, 135-138, (2001) · Zbl 0992.76006
[16] Fetecau, C.; Fetecau, C.; Zierep, J., Decay of a potential vortex and propagation of a heat wave in a second grade fluid, Int. J. non-linear mech., 37, 1051-1056, (2002) · Zbl 1346.76033
[17] C. Fetecau, C. Fetecau, Starting solutions for some simple oscillating motions of second grade fluids, Math. Prob. Eng. (in press). · Zbl 1211.76032
[18] Fetecau, C.; Fetecau, C., On some axial coette flows of non-Newtonian fluids, Z. angew. math. phys. (ZAMP), 56, 1098-1106, (2005) · Zbl 1096.76003
[19] Fosdick, R.L.; Rajagopal, K.R., Anomalous features in the model of “second order fluids”, Arch. ration. mech. anal., 70, 145-152, (1979) · Zbl 0427.76006
[20] Greenspan, H.P.; Howard, L.N., On a time dependent motion of a rotating fluid, J. fluid mech., 17, 385-404, (1963) · Zbl 0124.42901
[21] Gilman, P.A.; Benton, E.R., Influence of an axial magnetic field on the steady linear Ekman boundary layer, Phys. fluid, 11, 2397-2401, (1968) · Zbl 0164.29402
[22] Gupta, A.S., Hydromagnetic flow past a porous flat plate with Hall effects, Acta mech., 22, 3, 281-287, (1975) · Zbl 0313.76038
[23] Hartmann, J., Hg-dynamics-I, theory of the laminar flow of an electrically conducting liquid in a homogeneous magnetic field, Math. fys. medd., 15, 6, (1937)
[24] Hayat, T.; Hutter, K., Rotating flow of a second order fluid on a porous plate, Int. J. non-linear mech., 39, 767-777, (2004) · Zbl 1348.76149
[25] Hayat, T.; Hutter, K.; Asghar, S.; Siddiqui, A.M., MHD flows of an Oldroyd-B fluid, Math. comput. modelling, 39, 135-147, (2001)
[26] Hayat, T.; Khan, S.B.; Khan, M., The influence of Hall current on the rotating oscillating flows of an oldroy-B fluid in a porous medium, Nonlinear dyn., 47, 353-362, (2007) · Zbl 1180.76071
[27] Hayat, T.; Khan, M., Homotopy solutions for a generalized second grade fluid past a porous plate, Nonlinear dyn., 42, 395-405, (2005) · Zbl 1094.76005
[28] Hayat, T.; Khan, M.; Ayub, M.; Siddiqui, A.M., The unsteady Couette flow of a second grade fluid in a layer of porous medium, Arch. mech., 57, 405-416, (2005) · Zbl 1098.76007
[29] Hayat, T.; Khan, M.; Ayub, M., Some analytical solutions for second grade fluid flows for cylindrical geometries, Math. computer modelling, 43, 16-29, (2006) · Zbl 1090.76006
[30] Hayat, T.; Khan, M.; Ayub, M., Some analytical solutions for second grade fluid flows for cylindrical geometries, Math. comput. modell., 43, 16-19, (2006) · Zbl 1090.76006
[31] Hayat, T.; Abbas, Z.; Sajid, M.; Asghar, S., The influence of thermal radiation on MHD flow of a second grade fluid, Int. J. heat mass transf., 50, 931-941, (2007) · Zbl 1124.80325
[32] Hayat, T.; Khan, M.; Siddiqui, A.M.; Asghar, S., Transient flows of a second grade fluid, Int. J. non-linear mech., 39, 1621-1633, (2004) · Zbl 1348.76017
[33] Hayat, T.; Mumtaz, S., Resonant oscillations of a plate in an electrically conducting rotating Johnson-Segalman fluid, Comp. math. appl., 50, 1669-1676, (2005) · Zbl 1082.76116
[34] Hayat, T.; Nadeem, S.; Asghar, S., Hydromagnetic Couette flow of an Oldroyd-B fluid, Int. J. eng. sci., 42, 65-78, (2004) · Zbl 1211.76144
[35] Hayat, T.; Nadeem, S.; Asghar, S.; Siddiqui, A.M., Fluctuating flow of a third grade fluid on a porous plate in a rotating medium, Int. J. non-linear mech., 36, 901-916, (2000) · Zbl 1345.76099
[36] Hayat, T.; Nadeem, S.; Asghar, S.; Siddiqui, A.M., MHD rotating flow of a third grade fluid on an oscillating porous plate, Acta mech., 152, 152-177, (2001) · Zbl 0993.76091
[37] Hayat, T.; Sajid, M., Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet, Int. J. heat mass transf., 50, 75-84, (2007) · Zbl 1104.80006
[38] Hayat, T.; Wang, Y.; Hutter, K., Hall effects on the unsteady hydromagnetic oscillatory flow of a second grade fluid, Int. J. non-linear mech., 39, 1027-1037, (2004) · Zbl 1348.76187
[39] Hayat, T.; Ellahi, R.; Asghar, S., Unsteady magnetohydrodynamic non-Newtonian flow due to non-coaxial rotations of disk and a fluid at infinity, Chem. eng. comm., 194, 37-49, (2007)
[40] Katagiri, M., The effect of Hall currents on the magnetohydrodynamic boundary layer flow past a semi-infinite flat plate, J. phy. soc. Japan., 27, 1051-1059, (1969)
[41] Pop, I.; Soundalgekar, V.M., Effects of Hall current on hydromagnetic flow near a porous plate, Acta mech., 20, 315-318, (1974) · Zbl 0305.76055
[42] Puri, P., Rotating flow of an elastico-viscous fluid on an oscillating plate, Z. angew. math. mech., 54, 743-745, (1974) · Zbl 0292.76063
[43] Puri, P.; Kulshrestha, P.K., Rotating flow of non-Newtonian fluids, Appl. anal., 4, 131-140, (1974) · Zbl 0303.76057
[44] Rajagopal, K.R., On the creeping flow of the second order fluid, J. non-Newtonian fluid mech., 15, 239-246, (1984) · Zbl 0568.76015
[45] Rajagopal, K.R., On boundary conditions for fluids of the differential type, (), 273-275 · Zbl 0846.35107
[46] Shercliff, I., Steady motion of conducting fluids in pipes under transverse magnetic fields, Proc. camb. phil. soc., 17, 385-404, (1963)
[47] Singh, K.D., An oscillatory hydromagnetic Couette flow in a rotating system, Z. angew. math. mech., 80, 6, 429-432, (2000) · Zbl 0959.76094
[48] Siddiqui, A.M.; Khan, M.; Asghar, S.; Hayat, T., Exact solutions in MHD rotating flow, Mech. res. comm., 28, 4, 485-491, (2001) · Zbl 0997.76098
[49] I.N. Sneddon, Functional Analysis, in: Encyclopedia of Physics, vol II, Springer, Berlin, Gottingen, Heichelberg, 1955.
[50] Singh, M.P.; Sathi, H.L., An exact solution in rotating flow, J. math. mech., 17, 3, 193-200, (1968) · Zbl 0172.53602
[51] Tan, W.C.; Masuoka, T., Stokes’ first problem for a second grade fluid in a porous half space with heated boundary, Int. J. non-linear mech., 40, 515-522, (2005) · Zbl 1349.76830
[52] Tan, W.C.; Masuoka, T., Stokes first problem for an Oldroyd-B fluid in a porous half space, Phys. fluids., 17, 023101-023107, (2005) · Zbl 1187.76517
[53] Vafai, K.; Tien, C.L., Boundary and inertia effects on flow and heat transfer in porous media, Int. J. heat mass transf., 24, 195-203, (1981) · Zbl 0464.76073
[54] Wang, Y.; Hayat, T., Hydrodmagnetic rotating flow of a fourth order fluid past a porous plate, Math. meth. appl. sci., 27, 477-496, (2004) · Zbl 1128.76378
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.