zbMATH — the first resource for mathematics

Robust state-derivative pole placement LMI-based designs for linear systems. (English) Zbl 1154.93366
Summary: In some practical problems, for instance in the control systems for the suppression of vibration in mechanical systems, the state-derivative signals are easier to obtain than the state signals. Necessary and sufficient LMI-based conditions for pole placement of linear systems using state-derivative feedback are proposed. Sufficient conditions for pole placement for a class of uncertain systems or systems subject to structural failures are also presented. The simulation of practical applications illustrates the efficiency of the proposed methods.

93B55 Pole and zero placement problems
93C05 Linear systems in control theory
93B52 Feedback control
LMI toolbox; SeDuMi
Full Text: DOI
[1] DOI: 10.1049/ip-cta:20040660
[2] Abdelaziz THS, Kybernetika 41 pp 637– (2005)
[3] DOI: 10.1109/9.231470 · Zbl 0800.93453
[4] Assunção E, in Proceedings of the 38th IEEE Conference on Decision and Control pp 1857– (1999)
[5] DOI: 10.1049/iet-cta:20050506
[6] DOI: 10.1080/00207720601053568 · Zbl 1148.93011
[7] DOI: 10.1080/00207170701283899 · Zbl 1133.93022
[8] Boyd S, 15 of SIAM Studies in Applied Mathematics, 2. ed. (1994)
[10] Chen C, in The Oxford Series in Electrical and Computer Engineering, 3. ed. (1999)
[11] DOI: 10.1109/9.486637 · Zbl 0857.93048
[12] DOI: 10.1111/j.1467-8667.2005.00396.x
[13] DOI: 10.1109/TAC.1987.1104624 · Zbl 0627.93029
[14] DOI: 10.1049/ip-cta:20045041
[15] Gahinet, P, Nemirovski, A, Laub, AJ and Chilali, M. 1995. ”LMI Control Toolbox–For Use with MATLAB”. Natick, MA: The Math Works Inc.
[16] DOI: 10.1109/9.362872 · Zbl 0925.93301
[17] Graham A, Kronecker Product and Matrix Calculus with Applications (1981)
[18] DOI: 10.1109/9.109638 · Zbl 0747.93025
[19] DOI: 10.1016/S0967-0661(97)00046-4
[20] Isermann R, Fault-Diagnosis systems: An Introduction From Fault Detection to Fault tolerance (2006)
[21] DOI: 10.1016/S0967-0661(97)00053-1
[22] DOI: 10.1006/jsvi.2001.3842 · Zbl 1237.93127
[23] DOI: 10.1061/(ASCE)0893-1321(2002)15:1(1)
[24] DOI: 10.1016/j.automatica.2004.01.028 · Zbl 1051.93042
[25] DOI: 10.1016/j.automatica.2005.01.002 · Zbl 1091.93019
[26] Ogata K, Modern Control Engineering (1997)
[27] Reithmeier E, Archive of Applied Mechanics 72 pp 856– (2003)
[28] Teixeira MCM, in Proceedings of the 6th European Control Conference pp 120– (2001)
[29] DOI: 10.1109/TFUZZ.2003.817840
[30] DOI: 10.3166/ejc.11.167-170
[31] DOI: 10.1109/VSS.2006.1644539
[32] DOI: 10.1191/0142331206tm167oa
[33] DOI: 10.1109/TCST.2006.883191
[34] DOI: 10.1016/S0005-1098(02)00269-8 · Zbl 1036.93061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.