×

Soft BCK/BCI-algebras. (English) Zbl 1155.06301

Summary: D. Molodtsov [Comput. Math. Appl. 37, 19–31 (1999; Zbl 0936.03049)] introduced the concept of soft set as a new mathematical tool for dealing with uncertainties that is free from the difficulties that have troubled the usual theoretical approaches. In this paper we apply the notion of soft sets by Molodtsov to the theory of BCK/BCI-algebras. The notion of soft BCK/BCI-algebras and soft subalgebras are introduced, and their basic properties are derived.

MSC:

06F35 BCK-algebras, BCI-algebras

Citations:

Zbl 0936.03049
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Molodtsov, D., Soft set theory — first results, Comput. math. appl., 37, 19-31, (1999) · Zbl 0936.03049
[2] Maji, P.K.; Roy, A.R.; Biswas, R., An application of soft sets in a decision making problem, Comput. math. appl., 44, 1077-1083, (2002) · Zbl 1044.90042
[3] Maji, P.K.; Biswas, R.; Roy, A.R., Soft set theory, Comput. math. appl., 45, 555-562, (2003) · Zbl 1032.03525
[4] Chen, D.; Tsang, E.C.C.; Yeung, D.S.; Wang, X., The parametrization reduction of soft sets and its applications, Comput. math. appl., 49, 757-763, (2005) · Zbl 1074.03510
[5] Zadeh, L.A., Fuzzy sets, Inform. control, 8, 338-353, (1965) · Zbl 0139.24606
[6] Jun, Y.B.; Xin, X.L., Involutory and invertible fuzzy BCK-algebras, Fuzzy sets and systems, 117, 463-469, (2001) · Zbl 0968.06015
[7] Jun, Y.B.; Xin, X.L., Fuzzy prime ideals and invertible fuzzy ideals in BCK-algebras, Fuzzy sets and systems, 117, 471-476, (2001) · Zbl 0968.06014
[8] Dudek, W.A.; Jun, Y.B.; Stojakovic, Z., On fuzzy ideals in BCC-algebras, Fuzzy sets and systems, 123, 251-258, (2001) · Zbl 1018.06016
[9] Jun, Y.B.; Roh, E.H.; Kim, H.S., On fuzzy B-algebras, Czechoslovak math. J., 52, 127, 375-384, (2002) · Zbl 1011.06501
[10] Jun, Y.B.; Shim, W.H., Fuzzy strong implicative hyper BCK-ideals of hyper BCK-algebras, Inform. sci., 170, 351-361, (2005) · Zbl 1071.06012
[11] Jun, Y.B.; Xu, Y.; Zhang, X.H., Fuzzy filters of MTL-algebras, Inform. sci., 175, 120-138, (2005) · Zbl 1077.03044
[12] Jun, Y.B.; Ozturk, M.A.; Song, S.Z., On fuzzy \(h\)-ideals in hemirings, Inform. sci., 162, 211-226, (2004) · Zbl 1064.16051
[13] Jun, Y.B.; Ahn, S.S.; Kim, H.S., Quotient structures of some implicative algebras via fuzzy implicative filters, Fuzzy sets and systems, 121, 325-332, (2001) · Zbl 0981.03067
[14] Jun, Y.B., Fuzzy positive implicative and fuzzy associative filters of lattice implication algerbas, Fuzzy sets and systems, 121, 353-357, (2001) · Zbl 0981.03066
[15] Jun, Y.B.; Ahn, S.S.; Kim, H.S., Fuzzy subincline (ideals) of incline algebras, Fuzzy sets and systems, 123, 217-225, (2001) · Zbl 1008.16043
[16] Chaudhry, M.A., Weakly positive implicative and weakly implicative BCI-algebras, Math. jpn., 35, 141-151, (1990) · Zbl 0702.06014
[17] Iséki, K.; Tanaka, S., An introduction to the theory of BCK-algebras, Math. jpn., 23, 1-26, (1978) · Zbl 0385.03051
[18] Meng, J.; Jun, Y.B., BCK-algebras, (1994), Kyungmoon Sa Co. Seoul · Zbl 0814.06012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.