×

zbMATH — the first resource for mathematics

A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations. (English) Zbl 1155.35406
Summary: This article considers a stabilized finite element approximation for the branch of nonsingular solutions of the stationary Navier-Stokes equations based on local polynomial pressure projection by using the lowest equal-order elements. The proposed stabilized method has a number of attractive computational properties. Firstly, it is free from stabilization parameters. Secondly, it only requires the simple and efficient calculation of Gauss integral residual terms. Thirdly, it can be implemented at the element level. The optimal error estimate is obtained by the standard finite element technique. Finally, comparison with other methods, through a series of numerical experiments, shows that this method has better stability and accuracy.

MSC:
35Q30 Navier-Stokes equations
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
76M10 Finite element methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adams, R.A., Sobolev spaces, (1975), Academic Press New York · Zbl 0186.19101
[2] Arnold, D.N., A stable finite element for the Stokes equations, Calcolo, IV, 1-8, (1984)
[3] Baiocchi, C.; Brezzi, F., Stabilization of unstable numerical methods, Proc. problemi attuali dell analisi e Della fisica matematica taormina, 59-64, (1992)
[4] Bochev, P.B.; Gunzburger, M.D., An absolutely stable pressure – poisson stabilized finite element method for the Stokes equations, SIAM J. numer. anal., 42, 1189-1207, (2004) · Zbl 1159.76346
[5] Bochev, P.B.; Dohrmann, C.R.; Gunzburger, M.D., Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J. numer. anal., 44, 82-101, (2006) · Zbl 1145.76015
[6] Brefort, B., Attractor for the penalty navier – stokes equations, SIAM J. math. anal., 19, 1-21, (1988) · Zbl 0696.35131
[7] Brezzi, F.; Douglas, J., Stabilized mixed methods for the Stokes problem, Numer. math., 53, 225-235, (1988) · Zbl 0669.76052
[8] Brezzi, F.; Pitkäranta, J., On the stabilisation of finite element approximations of the Stokes problem, (), 11-19
[9] Brezzi, F.; Rappaz, J.; Raviart, P.-A., Finite element approximation of nonlinear problems. part I: branch of nonsingular solutions, Numer. math., 36, 1-25, (1980) · Zbl 0488.65021
[10] Ciarlet, P.G., The finite element method for elliptic problems, (1978), North-Holland Amsterdam · Zbl 0445.73043
[11] Dohrmann, C.R.; Bochev, P.B., A stabilized finite element method for the Stokes problem based on polynomial pressure projections, Int. J. numer. meth. fluids, 46, 183-201, (2004) · Zbl 1060.76569
[12] Douglas, J.; Wang, J., An absolutely stabilized finite element method for the Stokes problem, Math. comp., 52, 495-508, (1989) · Zbl 0669.76051
[13] Falk, R., An analysis of the penalty method and extrapolation for the stationary Stokes equations, (), 66-69
[14] Girault, V.; Raviart, P.A., Finite element method for navier – stokes equations: theory and algorithms, (1987), Springer-Verlag Berlin, Heidelberg · Zbl 0396.65070
[15] He, Y.N.; Wang, A.W.; Mei, L.Q., Stabilized finite-element method for the stationary navier – stokes equations, J. engrg. math., 51, 367-380, (2005) · Zbl 1069.76031
[16] Heywood, J.G.; Rannacher, R., Finite-element approximations of the nonstationary navier – stokes problem. part I: regularity of solutions and second-order spatial discretization, SIAM J. numer. anal., 19, 275-311, (1982) · Zbl 0487.76035
[17] Hughes, T.; Franca, L.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. circumventing the babuska – brezzi condition: A stable petrov – galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. methods appl. mech. engrg., 59, 85-99, (1986) · Zbl 0622.76077
[18] John, V.; Kaya, S., Finite element error analysis and implementation of a variational multiscale method for the Navier Stokes equations, SIAM J. sci. comput., 5, 1485-1503, (2005) · Zbl 1073.76054
[19] S. Kaya, W. Layton, Subgrid-scale eddy viscosity methods are variational multiscale methods, Technical report, TR-MATH 03-05, University of Pittsburgh, 2003
[20] Kaya, S.; Riviére, B., A two-grid stabilization method for solving the steady-state navier – stokes equations, Numer. methods partial differential equations, 3, 728-743, (2006) · Zbl 1089.76034
[21] Layton, W.; Tobiska, L., A two-level method with backtraking for the navier – stokes equations, SIAM J. numer. anal., 35, 2035-2054, (1998) · Zbl 0913.76050
[22] J. Li, Investigations of three stabilized finite element methods for the stokes equations by using the lowest equal-order pairs to circumvent the inf – sup condition, submitted for publication
[23] J. Li, Y.N. He, A stabilized finite element method based on two local Gauss integrations for the Stokes equations, J. Comp. Appl. Math., in press · Zbl 1132.35436
[24] Li, J.; Mei, L.Q.; He, Y.N., A pressure – poisson stabilized finite element method for the nonstationary Stokes equations to circumvent the inf – sup condition, Appl. math. comp., 182, 24-35, (2006) · Zbl 1119.65092
[25] Li, K.T.; He, Y.N., Taylor expansion algorithm for the branching solution of the navier – stokes equations, Inter. J. numer. anal. modeling, 2, 459-478, (2005) · Zbl 1100.35079
[26] Shen, J., On error estimates of the penalty method for unsteady navier – stokes equations, SIAM J. numer. anal., 32, 386-403, (1995) · Zbl 0822.35008
[27] D.J. Silvester, Stabilised mixed finite element methods, Numerical Analysis Report No. 262, 1995
[28] Silvester, D.J., Optimal low-order finite element methods for incompressible flow, Comp. meth. appl. mech. engrg., 111, 357-368, (1994) · Zbl 0844.76059
[29] Silvester, D.J.; Kechkar, N., Stabilized bilinear-constant velocity – pressure finite elements for the conjugate gradient solution of the Stokes problem, Comp. meth. appl. mech. engrg., 79, 71-86, (1990) · Zbl 0706.76075
[30] Temam, R., Navier – stokes equations, theory and numerical analysis, (1984), North-Holland Amsterdam · Zbl 0568.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.