Lorenz, Edward N. Compound windows of the Hénon-map. (English) Zbl 1155.37030 Physica D 237, No. 13, 1689-1704 (2008). For the standard 2-parameter 2nd order Henon map shapes and locations of periodic windows in the bifurcation diagram are studied numerically by means of a random searching procedure. To study the stability of solutions the author introduces a functional whose values smaller than one on modulus indicate the stability of the portion of a window where a fundamental period prevails. Reviewer: Michael L. Blank (Moskva) Cited in 1 ReviewCited in 15 Documents MSC: 37E99 Low-dimensional dynamical systems 37C99 Smooth dynamical systems: general theory 37G99 Local and nonlocal bifurcation theory for dynamical systems Keywords:Henon map; bifurcation diagram; periodic window PDF BibTeX XML Cite \textit{E. N. Lorenz}, Physica D 237, No. 13, 1689--1704 (2008; Zbl 1155.37030) Full Text: DOI OpenURL References: [1] Benedicks, M.; Carleson, L., The dynamics of the Hénon map, Ann. math., 133, 73-169, (1991) · Zbl 0724.58042 [2] Carcassès, J.P.; Mira, C.; Bosch, M.; Simó, C.; Tatjer, J.C., Crossroad area—spring area transition. (1) parameter plane representation, Internat J. bifur. chaos, 1, 183-196, (1991) · Zbl 0758.58025 [3] Collet, P.; Eckmann, J.-P., On the abundance of aperiodic behavior for maps of the interval, Commun. math. phys., 73, 115-160, (1980) · Zbl 0441.58011 [4] Curry, J.H., On the Hénon transformation, Comm. math. phys., 68, 129-140, (1979) · Zbl 0414.58024 [5] Feigenbaum, M., Quantitative universality for a class of nonlinear transformations, J. stat. phys., 19, 25-52, (1978) · Zbl 0509.58037 [6] Feit, S.B., Characteristic exponents and strange attractors, Comm. math. phys., 61, 249-260, (1978) · Zbl 0399.65091 [7] Guckenheimber, J.; Holmes, P., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, (1983), Springer New York [8] Hénon, M., A two-dimensional mapping with a strange attractor, Commun. math. phys., 50, 69-77, (1976) · Zbl 0576.58018 [9] Hitzl, D.L.; Zele, F., An exploration of the Hénon map, Physica D, 14, 305-326, (1985) · Zbl 0602.58025 [10] Hunt, B.H.; Kennedy, J.A.; Li, T.-Y.; Nusse, H.E., SLYRB measures: natural invariant measures for chaotic systems, Physica D, 170, 50-71, (2002) · Zbl 1098.37517 [11] Jakobson, M.V., Absolutely continuous measures for one-parameter families of one-dimensional maps, Comm. math. phys., 81, 39-88, (1981) · Zbl 0497.58017 [12] Julia, G., Mémoire sur l’itération des fonctions rationelles, J. math. pure appl., 4, 47-245, (1918) · JFM 46.0520.06 [13] Lauwerier, H.A., () [14] Lorenz, E.N., The problem of deducing the climate from the governing equations, Tellus, 16, 1-11, (1964) [15] Lozi, R., Un attracteur étrange (?) due type attracteur de Hénon, J. phys. (Paris), 39, 9-10, (1978) [16] May, R.M., Simple mathematical models with very complicated dynamics, Nature, 261, 459-467, (1976) · Zbl 1369.37088 [17] Mira, C., Chaotic dynamics. from the one-dimensional endomorphism to the two-dimensional diffeomorphism, (1987), World Scientific Singapore · Zbl 0641.58002 [18] Mira, C.; Carcassès, J.P.; Bosch, M.; Simó, C.; Tatjer, J.C., Crossroad area—spring area transition. (2) foliated parameter representation, Internat J. bifur. chaos, 1, 339-348, (1991) · Zbl 0876.58035 [19] Mira, C.; Carcassès, J.P., On the “crossroad area—saddle area“ and “crossroad area—spring area” transitions, Internat. J. bifur. chaos, 1, 641-655, (1991) · Zbl 0874.58060 [20] Olsen, L.F.; Degn, H., Chaos in biological systems, Q. rev. biophys., 18, 165-225, (1985) [21] Simó, C., On the Hénon – pomeau attractor, J. stat. phys., 21, 465-494, (1979) [22] Gallas, J.A.C., Structure of the parameter space of the Hénon map, Phys. rev. let., 70, 2714, (1993) [23] Gallas, J.A.C., Dissecting shrimps: results for some one-dimensional physical systems, Physica A, 202, 196, (1994) [24] Bonatto, C.; Gallas, J.A.C.; Ueda, Y., Chaotic phase similarities and recurrences in a damped-driven duffling oscillator, Phys. rev. E, 77, 026217, (2008) [25] Hunt, B.R..; Gallas, J.A.C.; Grebogi, C.; Yorke, J.A.; Koçak, H., Bifurcation rigidity, Physica D, 129, 35, (1999) · Zbl 0951.37010 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.