×

zbMATH — the first resource for mathematics

Duality in algebra and topology. (English) Zbl 1155.55302
Summary: We apply ideas from commutative algebra, and Morita theory to algebraic topology using ring spectra. This allows us to prove new duality results in algebra and topology, and to view (1) Poincaré duality for manifolds, (2) Gorenstein duality for commutative rings, (3) Benson-Carlson duality for cohomology rings of finite groups, (4) Poincaré duality for groups and (5) Gross-Hopkins duality in chromatic stable homotopy theory as examples of a single phenomenon.
This paper is a natural continuation of the previous papers by the authors [Comment. Math. Helv. 81, No. 2, 383-432 (2006; Zbl 1096.13027), W. G. Dwyer and J. P. C. Greenlees, Am. J. Math. 124, No. 1, 199-220 (2002; Zbl 1017.18008)]

MSC:
55P43 Spectra with additional structure (\(E_\infty\), \(A_\infty\), ring spectra, etc.)
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
16D90 Module categories in associative algebras
18E30 Derived categories, triangulated categories (MSC2010)
55R40 Homology of classifying spaces and characteristic classes in algebraic topology
57N65 Algebraic topology of manifolds
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] J.F. Adams, Lectures on generalised cohomology, Category Theory, Homology Theory and their Applications, III, Battelle Institute Conference, Seattle, Washington, 1968, vol. 3, Springer, Berlin, 1969, pp. 1-138.
[2] Atiyah, M.F.; Macdonald, I.G., Introduction to commutative algebra, (1969), Addison-Wesley Reading, MA, London, Don Mills, Ont. · Zbl 0175.03601
[3] Avramov, L.L.; Foxby, H.-B., Locally Gorenstein homomorphisms, Amer. J. math., 114, 5, 1007-1047, (1992) · Zbl 0769.13007
[4] Avramov, L.L.; Golod, E.S., The homology of algebra of the Koszul complex of a local Gorenstein ring, Mat. zametki, 9, 53-58, (1971) · Zbl 0213.04904
[5] Benson, D.J.; Carlson, J.F., Projective resolutions and Poincaré duality complexes, Trans. amer. math. soc., 342, 2, 447-488, (1994) · Zbl 0816.20044
[6] Benson, D.J.; Greenlees, J.P.C., Commutative algebra for cohomology rings of classifying spaces of compact Lie groups, J. pure appl. algebra, 122, 1-2, 41-53, (1997) · Zbl 0886.57022
[7] Bousfield, A.K., On the homology spectral sequence of a cosimplicial space, Amer. J. math., 109, 2, 361-394, (1987) · Zbl 0623.55009
[8] A.K. Bousfield, D.M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, vol. 304, Springer, Berlin, 1972. · Zbl 0259.55004
[9] Brown, E.H.; Comenetz, M., Pontrjagin duality for generalized homology and cohomology theories, Amer. J. math., 98, 1, 1-27, (1976) · Zbl 0325.55008
[10] Dror-Farjoun, E., Cellular spaces, null spaces and homotopy localization, (1996), Springer Berlin · Zbl 0842.55001
[11] Dwyer, W.G., Strong convergence of the Eilenberg-Moore spectral sequence, Topology, 13, 255-265, (1974) · Zbl 0303.55012
[12] Dwyer, W.G., Exotic convergence of the Eilenberg-Moore spectral sequence, Illinois J. math., 19, 4, 607-617, (1975) · Zbl 0328.55014
[13] Dwyer, W.G.; Greenlees, J.P.C., Complete modules and torsion modules, Amer. J. math., 124, 199-220, (2002) · Zbl 1017.18008
[14] W.G. Dwyer, J.P.C. Greenlees, S. Iyengar, Gross-Hopkins duality, in preparation.
[15] W.G. Dwyer, J.P.C. Greenlees, S. Iyengar, Finiteness in derived categories of local rings, Comment. Math. Helv. 2005, to appear. · Zbl 1096.13027
[16] Dwyer, W.G.; Spaliński, J., Homotopy theories and model categories, (), 73-126 · Zbl 0869.55018
[17] Dwyer, W.G.; Wilkerson, C.W., Homotopy fixed-point methods for Lie groups and finite loop spaces, Ann. of math., 139, 2, 395-442, (1994) · Zbl 0801.55007
[18] Eilenberg, S.; Moore, J.C., Homology and fibrations. I. coalgebras, cotensor product and its derived functors, Comment. math. helv., 40, 199-236, (1966) · Zbl 0148.43203
[19] Elmendorf, A.D.; Kříž, I.; Mandell, M.A.; May, J.P., Modern foundations for stable homotopy theory, (), 213-253 · Zbl 0865.55007
[20] Félix, Y.; Halperin, S.; Thomas, J.-C., Gorenstein spaces, Adv. in math., 71, 1, 92-112, (1988) · Zbl 0659.57011
[21] Frankild, A.; Jørgensen, P., Gorenstein differential graded algebras, Israel J. math., 135, 327-353, (2003) · Zbl 1067.13013
[22] Goerss, P.G.; Jardine, J.F., Simplicial homotopy theory, progress in mathematics, vol. 174, (1999), Birkhäuser Basel · Zbl 0914.55004
[23] Golod, E., The cohomology ring of a finite \(p\)-group, Dokl. akad. nauk SSSR, 125, 703-706, (1959) · Zbl 0099.38801
[24] Greenlees, J.P.C., Commutative algebra in group cohomology, J. pure appl. algebra, 98, 2, 151-162, (1995) · Zbl 0826.55012
[25] Greenlees, J.P.C.; Lyubeznik, G., Rings with a local cohomology theorem and applications to cohomology rings of groups, J. pure appl. algebra, 149, 3, 267-285, (2000) · Zbl 0965.13012
[26] A. Grothendieck, Local cohomology, Course notes taken by R. Hartshorne, Harvard University, Fall, 1961, Lecture Notes in Mathematics, vol. 41, Springer, Berlin, 1967.
[27] P.S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003. · Zbl 1017.55001
[28] M. Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. · Zbl 0909.55001
[29] Hovey, M.; Shipley, B.; Smith, J., Symmetric spectra, J. amer. math. soc., 13, 1, 149-208, (2000) · Zbl 0931.55006
[30] Illman, S., Smooth equivariant triangulations of \(G\)-manifolds for \(G\) a finite group, Math. ann., 233, 3, 199-220, (1978) · Zbl 0359.57001
[31] Klein, J.R., The dualizing spectrum of a topological group, Math. ann., 319, 3, 421-456, (2001) · Zbl 0982.55004
[32] I. Kříž, J.P. May, Operads, algebras, modules and motives, Astérisque (233) (1995) iv+145pp. · Zbl 0840.18001
[33] N.J. Kuhn, The McCord model for the tensor product of a space and a commutative ring spectrum, Categorical decomposition techniques in algebraic topology (Isle of Skye 2001) Prog. Math. 215, (2004) 213-236.
[34] Levi, R., On homological rate of growth and the homotopy type of \(\operatorname{\Omega} \mathit{BG}_p^\wedge\), Math. Z., 226, 3, 429-444, (1997) · Zbl 1015.55008
[35] Lin, T.Y., Duality and Eilenberg-mac Lane spectra, Proc. amer. math. soc., 56, 291-299, (1976) · Zbl 0326.55009
[36] Mandell, M.A., \(E_\infty\) algebras and \(p\)-adic homotopy theory, Topology, 40, 1, 43-94, (2001) · Zbl 0974.55004
[37] H. Matsumura, Commutative Ring Theory, second ed., Cambridge University Press, Cambridge, 1989 (Translated from the Japanese by M. Reid). · Zbl 0666.13002
[38] Milnor, J.W.; Moore, J.C., On the structure of Hopf algebras, Ann. of math., 81, 2, 211-264, (1965) · Zbl 0163.28202
[39] J.C. Moore, F.P. Peterson, Nearly Frobenius algebras and their module categories, Symposium on Algebraic Topology, Battelle Seattle Research Center, Seattle, Washington, 1971), Lecture Notes in Mathamatics vol. 249, Springer, Berlin, 1971, pp. 94-98.
[40] Neeman, A., The chromatic tower for \(D(R)\), Topology, 31, 3, 519-532, (1992), (with an appendix by Marcel Bökstedt) · Zbl 0793.18008
[41] Rothenberg, M.; Steenrod, N.E., The cohomology of classifying spaces of \(H\)-spaces, Bull. amer. math. soc., 71, 872-875, (1965) · Zbl 0132.19201
[42] B. Shipley, \(H \mathbb{Z}\)-algebra spectra are differential graded algebras, 2004, preprint.
[43] B. Shipley, S. Schwede, Equivalences of monoidal model categories, Algebr. Geom. Topol. 3 (2003) 287-334. · Zbl 1028.55013
[44] Spaltenstein, N., Resolutions of unbounded complexes, Compositio math., 65, 2, 121-154, (1988) · Zbl 0636.18006
[45] Sweedler, M.E., Hopf algebras, (1969), Benjamin New York · Zbl 0194.32901
[46] Venkov, B.B., Cohomology algebras for some classifying spaces, Dokl. akad. nauk SSSR, 127, 943-944, (1959) · Zbl 0099.38802
[47] Whitehead, G.W., Generalized homology theories, Trans. amer. math. soc., 102, 227-283, (1962) · Zbl 0124.38302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.