×

A computational framework for fluid-structure interaction: finite element formulation and applications. (English) Zbl 1155.76354

Summary: This work is concerned with the modelling of the interaction of fluid flow with flexible solid structures. The fluid flow considered is governed by the incompressible Navier-Stokes equations and modelled with stabilised low order velocity-pressure finite elements. The motion of the fluid domain is accounted for by an arbitrary Lagrangian-Eulerian (ALE) strategy. The structure is represented by means of an appropriate standard finite element formulation. For the temporal discretisation of both fluid and solid bodies, the discrete implicit generalised-\(\alpha \) method is employed.
An important aspect of the presented work is the introduction of the independent interface discretisation, which allows an efficient, modular and expandable implementation of the solution strategy. A simple data transfer strategy based on a finite element type interpolation of the interface degrees of freedom guarantees kinematic consistency and equilibrium of the stresses along the interface.
The resulting strongly coupled set of non-linear equations is solved by means of a novel partitioned solution procedure, which is based on the Newton-Raphson methodology and incorporates the full linearisation of the overall incremental problem. Thus, asymptotically quadratic convergence of the residuals is achieved. Numerical examples are presented to demonstrate the robustness and efficiency of the methodology.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Blevins, R.D., Flow-induced vibration, (2001), Krieger Malabar, FL
[2] Ohayon, R.; Felippa, C., Advances in computational methods for fluid – structure interaction and coupled problems, Comput. methods appl. mech. engrg., 190, 2977-3292, (1998)
[3] W. Dettmer, D. Perić, A computational framework for free surface flows accounting for surface tension, Comput. Methods Appl. Mech. Engrg., in press, doi:10.1016/j.cma.2004.07.057. · Zbl 1115.76043
[4] Dettmer, W.; Perić, D., A computational framework for fluid – rigid body interaction: finite element formulation and applications, Comput. methods appl. mech. engrg., 195, 1633-1666, (2006) · Zbl 1123.76029
[5] W. Dettmer, Finite element modelling of fluid flow with moving free surfaces and interfaces including fluid – solid interaction, Ph.D. thesis, University of Wales Swansea, 2004.
[6] Brooks, A.N.; Hughes, T.J.R., Streamline-upwind/petrov – galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier – stokes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[7] Hughes, T.J.R.; Franca, L.P.; Hulbert, G.M., A new finite element formulation for computational fluid dynamics: VIII. the Galerkin/least-squares method for advective – diffusive equations, Comput. methods appl. mech. engrg., 73, 173-189, (1989) · Zbl 0697.76100
[8] Hughes, T.J.R.; Franca, L.P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. circumventing the babuska – brezzi condition: a stable petrov – galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. methods appl. mech. engrg., 59, 85-99, (1986) · Zbl 0622.76077
[9] Tezduyar, T.E.; Mittal, S.; Ray, S.E.; Shih, R., Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity – pressure elements, Comput. methods appl. mech. engrg., 95, 221-242, (1992) · Zbl 0756.76048
[10] Droux, J.-J.; Hughes, T.J.R., A boundary integral modification of the Galerkin/least-squares formulation for the Stokes problem, Comput. methods appl. mech. engrg., 113, 173-182, (1994) · Zbl 0845.76038
[11] Jansen, K.E.; Collis, S.S.; Shakib, F., A better consistency for low-order stabilized finite element methods, Comput. methods appl. mech. engrg., 174, 153-170, (1999) · Zbl 0956.76044
[12] Tezduyar, T.E.; Osawa, Y., Finite element stabilization parameters computed from element matrices and vectors, Comput. methods appl. mech. engrg., 190, 411-430, (2000) · Zbl 0973.76057
[13] Masud, A.; Hughes, T.J.R., A space – time Galerkin/least-squares finite element formulation of the navier – stokes equations for moving domain problems, Comput. methods appl. mech. engrg., 146, 91-126, (1997) · Zbl 0899.76259
[14] Hansbo, P., A crank – nicolson type space – time finite element method for computing on moving meshes, J. comput. phys., 159, 274-289, (2000) · Zbl 0961.65091
[15] Behr, M.; Tezduyar, T.E., The shear slip mesh update method, Comput. methods appl. mech. engrg., 174, 261-274, (1999) · Zbl 0959.76037
[16] Kalro, V.; Tezduyar, T.E., A parallel 3D computational method for fluid – structure interactions in parachute systems, Comput. methods appl. mech. engrg., 190, 321-332, (2000) · Zbl 0993.76044
[17] Perić, D.; Slijepčević, S., Computational modelling of viscoplastic fluids based on a stabilised finite element method, Engrg. comput., 18, 577-591, (2001) · Zbl 1020.76029
[18] Dettmer, W.; Saksono, P.H.; Perić, D., On a finite element formulation for incompressible Newtonian fluid flows on moving domains in the presence of surface tension, Commun. numer. methods engrg., 19, 659-668, (2003) · Zbl 1112.76387
[19] W. Wall, Fluid-Struktur-Interaktion mit Stabilisierten Finiten Elementen, Ph.D. thesis, Universität Stuttgart, 1999.
[20] Franca, L.P., Advances in stabilised methods in computational mechanics, Comput. methods appl. mech. engrg., 166, 1-182, (1998)
[21] H.G. Matthies, Partitioned analysis of coupled systems, in: 5th International Conference on Computation of Shell and Spatial Structures, Salzburg, Austria, 2005.
[22] Hirt, C.W.; Amsden, A.A.; Cook, J.L., An arbitrary lagrangian – eulerian computing method for all flow speeds, J. comput. phys., 14, 227-253, (1974) · Zbl 0292.76018
[23] Hughes, T.J.R.; Liu, W.K.; Zimmermann, T.K., Lagrangian – eulerian finite element formulation for incompressible viscous flows, Comput. methods appl. mech. engrg., 29, 329-349, (1981) · Zbl 0482.76039
[24] Donea, J., Arbitrary lagrangian – eulerian finite element methods, (), 473-516
[25] Ramaswamy, B.; Kawahara, M., Arbitrary lagrangian – eulerian finite element method for unsteady, convective, incompressible viscous free surface fluid flow, Int. J. numer. methods fluids, 7, 1053-1075, (1987) · Zbl 0634.76033
[26] Ramaswamy, B., Numerical simulation of unsteady viscous free surface flow, J. comput. phys., 90, 396-430, (1990) · Zbl 0701.76036
[27] Huerta, A.; Liu, W.K., Viscous flow with large free surface motion, Comput. methods appl. mech. engrg., 69, 277-324, (1988) · Zbl 0655.76032
[28] Soulaimani, A.; Fortin, M.; Dhatt, G.; Ouellet, Y., Finite element simulation of two- and three-dimensional free surface flows, Comput. methods appl. mech. engrg., 86, 265-296, (1991) · Zbl 0761.76037
[29] Sackinger, P.A.; Schunk, P.R.; Rao, R.R., A newton – raphson pseudo-solid domain mapping technique for free and moving boundary problems: a finite element implementation, J. comput. phys., 125, 83-103, (1996) · Zbl 0853.65138
[30] Soulaimani, A.; Saad, Y., An arbitrary lagrangian – eulerian finite element method for solving three-dimensional free surface flows, Comput. methods appl. mech. engrg., 162, 79-106, (1998) · Zbl 0948.76043
[31] Braess, H.; Wriggers, P., Arbitrary Lagrangian Eulerian finite element analysis of free surface flow, Comput. methods appl. mech. engrg., 190, 95-109, (2000) · Zbl 0967.76053
[32] Belytschko, T.; Liu, W.K.; Moran, B., Nonlinear finite elements for continua and structures, (2000), John Wiley & Sons Chichester, UK · Zbl 0959.74001
[33] Tezduyar, T.E.; Behr, M.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space – time-procedure: I. the concept and the preliminary numerical tests, Comput. methods appl. mech. engrg., 94, 339-351, (1992) · Zbl 0745.76044
[34] Tezduyar, T.E.; Behr, M.; Mittal, S.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space – time-procedure: II. computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Comput. methods appl. mech. engrg., 94, 353-371, (1992) · Zbl 0745.76045
[35] Chung, J.; Hulbert, G.M., A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method, J. appl. mech., 60, 371-375, (1993) · Zbl 0775.73337
[36] Jansen, K.E.; Whiting, C.H.; Hulbert, G.M., A generalized α-method for integrating the filtered navier – stokes equations with a stabilized finite element method, Comput. methods appl. mech. engrg., 190, 305-319, (2000) · Zbl 0973.76048
[37] Dettmer, W.; Perić, D., An analysis of the time integration algorithms for the finite element solutions of incompressible navier – stokes equations based on a stabilised formulation, Comput. methods appl. mech. engrg., 192, 1177-1226, (2003) · Zbl 1091.76521
[38] Felippa, C.A.; Park, K.C.; Farhat, C., Partitioned analysis of coupled mechanical systems, Comput. methods appl. mech. engrg., 190, 3247-3270, (2001) · Zbl 0985.76075
[39] H.G. Matthies, R. Niekamp, J. Steindorf, Algorithms for Strong Coupling Procedures, preprint, 2004. · Zbl 1142.74050
[40] H.G. Matthies, J. Steindorf, Strong Coupling Methods, Technical University Brunswick, Institute of Scientific Computing, 2002, Informatikbericht 2002-06. · Zbl 1312.74009
[41] T.E. Tezduyar, Methods for computation of moving boundaries and interfaces, ECCOMAS 2004, Jyväskylä, Finland, 2004. · Zbl 1130.76369
[42] T.E. Tezduyar, S. Sathe, R. Keedy, K. Stein, Space – time techniques for finite element computation of flows with moving boundaries and interfaces, in: III International Congress on Numerical Methods in Engineering and Applied Sciences, Monterrey, Mexico, 2004. · Zbl 1118.74052
[43] Onate, E., A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation, Comput. methods appl. mech. engrg., 182, 355-370, (2000) · Zbl 0977.76050
[44] Tezduyar, T.E.; Behr, M.; Mittal, S.; Johnson, A.A., Computation of unsteady incompressible flows with the stabilized finite element methods—space – time formulations, iterative strategies and massively parallel implementations, (), 7-24
[45] Bar-Yoseph, P.Z.; Mereu, S.; Chippada, S.; Kalro, V.J., Automatic monitoring of element shape quality in 2-D and 3-D computational mesh dynamics, Comput. mech., 27, 378-395, (2001) · Zbl 1142.74378
[46] Degand, C.; Farhat, C., A three-dimensional torsional spring analogy method for unstructured dynamic meshes, Comput. struct., 80, 305-316, (2002)
[47] Farhat, C.; Lesoinne, M.; Le Tallec, P., Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretisation and application to aeroelasticity, Comput. methods appl. mech. engrg., 157, 95-114, (1998) · Zbl 0951.74015
[48] Bernardi, C.; Maday, Y.; Patera, A.T., A new non-conforming approach to domain decomposition: the mortar finite element method, (), 13-51 · Zbl 0797.65094
[49] Hansbo, P.; Hermansson, J., Nitsche’s method for coupling non-matching meshes in fluid – structure vibration problems, Comput. mech., 32, 134-139, (2003) · Zbl 1035.74055
[50] Hansbo, P.; Hermansson, J.; Svedberg, T., Nitsche’s method combined with space – time finite elements for ALE fluid – structure interaction problems, Comput. methods appl. mech. engrg., 193, 4195-4206, (2004) · Zbl 1175.74082
[51] Wall, W.A.; Ramm, E., Fluid – structure interaction based upon a stabilized (ALE) finite element method, () · Zbl 0951.76539
[52] B. Hübner, E. Walhorn, D. Dinkler, Strongly Coupled Analysis of Fluid-Structure Interaction Using Space-Time Finite Elements, ECCM 2001, Cracow, Poland.
[53] Hübner, B.; Walhorn, E.; Dinkler, D., A monolithic approach to fluid – structure interaction using space – time finite elements, Comput. methods appl. mech. engrg., 193, 2087-2104, (2004) · Zbl 1067.74575
[54] J. Steindorf, Partitionierte Verfahren für Probleme der Fluid-Struktur Wechselwirkung, Ph.D. thesis, Technische Universität Braunschweig, Mechanik-Zentrum, 2003.
[55] Zienkiewicz, O.C.; Taylor, R.L., The finite element method, (2000), Butterworth-Heinemann Oxford, UK · Zbl 0991.74002
[56] Luo, X.Y.; Pedley, T.J., A numerical simulation of unsteady flow in a two-dimensional collapsible channel, J. fluid mech., 314, 191-225, (1996) · Zbl 0875.76264
[57] Heil, M., An efficient solver for the fully coupled solution of large-displacement fluid – structure interaction problems, Comput. methods appl. mech. engrg., 193, 1-23, (2004) · Zbl 1137.74439
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.