×

zbMATH — the first resource for mathematics

The Vlasov dynamics and its fluctuations in the \(1/N\) limit of interacting classical particles. (English) Zbl 1155.81383
Summary: For classical \(N\)-particle systems with pair interaction \(N^{-1} \sum \limits_{1 \leqq i \leqq j \leqq N} \phi(q_i-q_i)\) the Vlasov dynamics is shown to be the \(w^*\)-limit as \(N\to\infty\). Propagation of molecular chaos holds in this limit, and the fluctuations of intensive observables converge to a Gaussian stochastic process.

MSC:
81V70 Many-body theory; quantum Hall effect
82C22 Interacting particle systems in time-dependent statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Vlasov, A.A.: J.E.T.P.8, 291 (1938)
[2] Kac, M.: Proc. 3rd Berkeley Symp. Math. Stat. Prob.3, 171 (1955)
[3] McKean, H.P.: Comm. Pure Appl. Math.28, 435 (1975)
[4] Grünbaum, F.A.: Arch. Rat. Mech. Anal.42, 323 (1971)
[5] Grad, H.: In: Handbuch der Physik, Vol. XII. Berlin-Göttingen-Heidelberg: Springer 1958
[6] Lanford, O.E., III: In: Dynamical systems, theory and applications (ed. J. Moser). Berlin-Heidelberg-New York: Springer 1975 · Zbl 0373.70016
[7] King, F.: Thesis, Univ. of California, Berkeley (1976)
[8] Hepp, K., Lieb, E.H.: Helv. Phys. Acta46, 573 (1973)
[9] Hirsch, M.W., Smale, S.: Differential equations, dynamical systems, and linear algebra. New York: Academic Press 1974 · Zbl 0309.34001
[10] Dudley, R.M.: Studia Math.27, 251 (1966)
[11] Billingsley, P.: Convergence of probability measures. New York: Wiley 1968 · Zbl 0172.21201
[12] Hewitt, E., Savage, L.: Trans. Amer. Math. Soc.80, 470 (1955)
[13] Hepp, K.: Commun. math. Phys.35, 265 (1974)
[14] Battle, G.: Dynamics and phase transitions for a continuous system of quantum particles in a box. Preprint
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.