×

The lower and upper approximations in a hypergroup. (English) Zbl 1156.68585

Summary: This paper presents a relationship between rough sets and hypergroup theory. We analyze the lower and upper approximations of a subset, with respect to an invertible subhypergroup and we consider some particular situations. Moreover, the notion of a rough subhypergroup is introduced. Finally, fuzzy rough subhypergroups are introduced and characterized.

MSC:

68T30 Knowledge representation
68T37 Reasoning under uncertainty in the context of artificial intelligence
20N20 Hypergroups
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Biswas, R.; Nanda, S., Rough groups and rough subgroups, Bull. Polish acad. sci. math., 42, 251-254, (1994) · Zbl 0834.68102
[2] Bonikowaski, Z., Algebraic structures of rough sets, (), 242-247
[3] Cheng, W.; Mo, Z.W.; Wang, J., Notes on the lower and upper approximations in a fuzzy group and rough ideals in semigroups, Inform. sci., 177, 22, 5134-5140, (2007), 15 November · Zbl 1123.20307
[4] Comer, S.D., On connections between information systems rough, sets and algebraic logic, (), 117-124 · Zbl 0793.03074
[5] P. Corsini, Rough Sets, Fuzzy Sets and Join Spaces, Honorary volume dedicated to Professor Emeritus Ioannis Mittas, Artistotle University of Thessaloniki, 1999-2000.
[6] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, 1993, Italy. · Zbl 0785.20032
[7] Corsini, P.; Leoreanu, V., Applications of hyperstructure theory, Advances in mathematics, vol. 5, (2003), Kluwer Academic Publishers · Zbl 1027.20051
[8] Davvaz, B., Roughness based on fuzzy ideals, Inform. sci., 176, 16, 2417-2437, (2006), 22 August · Zbl 1112.03049
[9] Davvaz, B., Roughness in rings, Inform. sci., 164, 1-4, 147-163, (2004) · Zbl 1072.16042
[10] Davvaz, B., Rough sets in a fundamental ring, Bull. Iranian math. soc., 24, 2, 49-61, (1998) · Zbl 0935.20064
[11] Davvaz, B., A new view of the approximations in \(H_v\)-groups, Soft comput., 10, 1043-1046, (2006) · Zbl 1106.20054
[12] Davvaz, B., Approximations in \(H_v\)-modules, Taiwanese J. math., 6, 4, 499-505, (2002) · Zbl 1044.20042
[13] Davvaz, B., Fuzzy hv-groups, Fuzzy sets syst., 101, 191-195, (1999) · Zbl 0935.20065
[14] Davvaz, B., Fuzzy hv submodules, Fuzzy sets syst., 117, 477484, (2001)
[15] Davvaz, B.; Corsini, P., Generalized fuzzy sub-hyperquasigroups of hyper-quasigroups, Soft comput., 10, 11, 1109-1114, (2006) · Zbl 1106.20055
[16] Davvaz, B.; Mahdavipour, M., Roughness in modules, Inform. sci., 176, 24, 3658-3674, (2006), 15 December · Zbl 1104.16036
[17] Dubois, D.; Prade, H., Rough fuzzy sets and fuzzy rough sets, Int. J. gen. syst., 17, 2-3, 191-209, (1990) · Zbl 0715.04006
[18] Iwinski, T., Algebraic approach to rough sets, Bull. Polish acad. sci. math., 35, 673-683, (1987) · Zbl 0639.68125
[19] Kuroki, N., Rough ideals in semigroups, Inform. sci., 100, 139-163, (1997) · Zbl 0916.20046
[20] Kuroki, N.; Mordeson, J.N., Structure of rough sets and rough groups, J. fuzzy math., 5, 1, 183-191, (1997) · Zbl 0982.03505
[21] Kuroki, N.; Wang, P.P., The lower and upper approximations in a fuzzy group, Inform. sci., 90, 203-220, (1996) · Zbl 0878.20050
[22] V. Leoreanu, Direct limits and products of join spaces associated with rough sets, Honorary volume dedicated to Professor Emeritus Ioannis Mittas, Artistotle University of Thessaloniki, 1999-2000.
[23] Leoreanu, V., Direct limits and products of join spaces associated with rough sets, part II, Int. J. sci. technol. univ. kashan, 1, 1, (2000)
[24] V. Leoreanu-Fotea, B. Davvaz, Join n-spaces and lattices, Multiple Valued Logic and Soft Computing, in press. · Zbl 1236.06005
[25] V. Leoreanu-Fotea, B. Davvaz, n-hypergroups and binary relations, European Journal of Combinatorics, Corrected Proof, Available online 5 September 2007, doi: 10.1016/j.ejc.2007.06.025.
[26] Marty, F., Sur une généralisation de la notion de group, 4th congress math. scandinaves, Stockholm, 45-49, (1934) · JFM 61.1014.03
[27] Mordeson, J.N.; Malik, M.S., Fuzzy commutative algebra, (1998), Word Publication · Zbl 1026.13002
[28] Nanda, S.; Majumdar, S., Fuzzy rough sets, Fuzzy sets syst., 45, 157-160, (1992) · Zbl 0749.04004
[29] Pawlak, Z., Rough sets, Int. J. comput. inform. sci., 11, 341-356, (1982) · Zbl 0501.68053
[30] Pawlak, Z., Rough sets – theoretical aspects of reasoning about data, (1991), Kluwer Academic Publishers Dordrecht · Zbl 0758.68054
[31] Pawlak, Z.; Skowron, A., Rudiments of rough sets, Inform. sci., 177, 1, 3-27, (2007), 1 January · Zbl 1142.68549
[32] Pawlak, Z.; Skowron, A., Rough sets: some extensions, Inform. sci., 177, 1, 28-40, (2007), 1 January · Zbl 1142.68550
[33] Pawlak, Z.; Skowron, A., Rough sets and Boolean reasoning, Inform. sci., 177, 1, 41-73, (2007), 1 January · Zbl 1142.68551
[34] ()
[35] ()
[36] Pomykala, J.; Pomykala, J.A., The stone algebra of rough sets, Bull. Polish acad. sci. math., 36, 495-508, (1988) · Zbl 0786.04008
[37] Prenowitz, W.; Jantosciak, J., Join geometries, (1979), Springer-Verlag UTM · Zbl 0421.52001
[38] Rosenfeld, A., Fuzzy groups, J. math. anal. appl., 35, 512-517, (1971) · Zbl 0194.05501
[39] Vougiouklis, T., Hyperstructures and their representations, (1994), Hadronic Press, Inc. · Zbl 0828.20076
[40] Yao, Y.Y., Constructive and algebraic methods of the theory of rough sets, Inform. sci., 109, 21-44, (1998) · Zbl 0934.03071
[41] Zadeh, L.A., Fuzzy sets, Inform. control, 9, 338-353, (1965) · Zbl 0139.24606
[42] Zahedi, M.M.; Bolurian, M.; Hasankhani, A., On polygroups and fuzzy subpolygroups, J. fuzzy math., 3, 1-15, (1995) · Zbl 0854.20073
[43] Zhu, W., Generalized rough sets based on relations, Inform. sci., 177, 22, 4997-5011, (2007), 15 November · Zbl 1129.68088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.