×

zbMATH — the first resource for mathematics

On the intrinsic nature of jump coefficients at the interface between a porous medium and a free fluid region. (English) Zbl 1156.80334
Summary: We discuss the physical nature of the jump parameters that generally appear in the expression for the jump conditions at a fluid/porous interface. These jump parameters are generally thought of as intrinsic interfacial properties, just like surface tension in the case of fluid/fluid interfaces. Based on a two-step up-scaling analysis, we show that jump parameters can be interpreted as surface-excess quantities. The value of a surface-excess quantity is shown to depend linearly on the position of the discontinuous interface and is therefore not an intrinsic property. We propose a theoretical approach that allows to introduce genuine intrinsic interfacial properties and to propose a best choice for the position of the discontinuous interface. We show that these properties are tightly related to the definition of the interfacial zone. This theoretical approach is successfully assessed on three important cases: a laminar flow parallel to a fluid/porous interface, a turbulent flow perpendicular to a porous/fluid interface and heat transfer perpendicular to a fluid/porous interface. It is believed that this approach is general enough to be applied to any interfacial transport phenomenon.

MSC:
80A20 Heat and mass transfer, heat flow (MSC2010)
76S05 Flows in porous media; filtration; seepage
76F25 Turbulent transport, mixing
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alazmi, B.; Vafai, K.: Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer, Int. J. Heat mass transfer 44, No. 9, 1735-1749 (2001) · Zbl 1091.76567 · doi:10.1016/S0017-9310(00)00217-9
[2] Beavers, G.; Joseph, D.: Boundary conditions at a naturally permeable wall, J. fluid mech. 30, 197-207 (1967)
[3] W.P. Breugem, B.J. Boersma, R.E. Uittenbogaard, Direct numerical simulation of plane channel flow over a 3D cartesian grid of cubes, in: A.H. Reis, A. Miguel (Eds.), Proceedings of the Second International Conference on Applications of Porous Media, Evora Geophysics Center, Portugal, 2004. · Zbl 1157.76332
[4] M. Chandesris, Modélisation des écoulements turbulents dans les milieux poreux et à l’interface avec un milieu libre, Thèse de doctorat, Université Paris VI, 2006.
[5] Chandesris, M.; Jamet, D.: Boundary conditions at a planar fluid – porous interface for a Poiseuille flow, Int. J. Heat mass transfer 49, No. 13 – 14, 2137-2150 (2006) · Zbl 1189.76589 · doi:10.1016/j.ijheatmasstransfer.2005.12.010
[6] Chandesris, M.; Jamet, D.: Boundary conditions at a fluid – porous interface: an a priori estimation of the stress jump coefficients, Int. J. Heat mass transfer 50, No. 17 – 18, 3422-3436 (2007) · Zbl 1115.76075 · doi:10.1016/j.ijheatmasstransfer.2007.01.053
[7] M. Chandesris, D. Jamet, Derivation of jump conditions for the turbulence k-&z.epsi; model at a fluid/porous interface, Int. J. Heat Fluid Flow, submitted for publication. · Zbl 1115.76075
[8] Davis, A.; James, D.: The slip velocity at the edge of a porous medium: effects of interior resistance and interface curvature, Transp. porous media 53, 175-196 (2003)
[9] Edwards, D. A.; Brenner, H.; Wasan, D. T.: Interfacial transport processes and rheology, (1991)
[10] I.E. Idel’cik, Memento des pertes de charge, Direction des etudes et recherches d’EDF, 1969.
[11] James, D. F.; Davis, A. M.: Flow at the interface of a model fibous porous medium, J. fluid mech. 426, 47-72 (2001) · Zbl 0981.76092 · doi:10.1017/S0022112000002160
[12] J. Lage, The fundamental theory of flow through permeable porous media from Darcy to turbulence, in: D.B. Ingham, I. Pop (Eds.), Transport Phenomena in Porous Media, 1998.
[13] Larson, R. E.; Higdon, J. J. L.: Microscopic flow near the surface of a two-dimensional porous media. Part 1. Axial flow, J. fluid mech. 166, 449-472 (1986) · Zbl 0596.76098 · doi:10.1017/S0022112086000228
[14] Larson, R. E.; Higdon, J. J. L.: Microscopic flow near the surface of a two-dimensional porous media. Part 2. Transverse flow, J. fluid mech. 178, 119-136 (1987) · Zbl 0633.76097 · doi:10.1017/S0022112087001149
[15] Ochoa-Tapia, J.; Whitaker, S.: Heat transfer at the boundary between a porous medium and a homogeneous fluid: the one-equation model, J. porous media 1, No. 1, 31-46 (1998) · Zbl 0916.76085
[16] Ochoa-Tapia, J. A.; Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid – I. Theoretical development, Int. J. Heat mass transfer 38, No. 14, 2635-2646 (1995) · Zbl 0923.76320 · doi:10.1016/0017-9310(94)00346-W
[17] Ochoa-Tapia, J. A.; Whitaker, S.: Heat transfer at the boundary between a porous medium and a homogeneous fluid, Int. J. Heat mass transfer 40, No. 11, 2691-2707 (1997) · Zbl 0915.76092 · doi:10.1016/S0017-9310(96)00250-5
[18] Quintard, M.; Whitaker, S.: Transport in ordered and disordered porous media – II. Generalized volume averaging, Transp. porous media 14, 179-206 (1994)
[19] Rowlinson, J. S.; Widom, B.: Molecular theory of capillarity, (1982)
[20] Saffman, P. G.: On the boundary condition at the surface of a porous medium, Stud. appl. Math. L, No. 2, 93-101 (1971) · Zbl 0271.76080
[21] Sahraoui, M.; Kaviany, M.: Slip and no-slip velocity boundary conditions at interface of porous, plain media, Int. J. Heat mass transfer 35, No. 4, 927-943 (1992) · Zbl 0757.76070 · doi:10.1016/0017-9310(92)90258-T
[22] Sahraoui, M.; Kaviany, M.: Slip and no-slip temperature boundary conditions at interface of porous, plain media: conduction, Int. J. Heat mass transfer 36, No. 4, 1019-1033 (1993) · Zbl 0757.76070
[23] Valdès-Parada, F. J.; Goyeau, B.; Ochoa-Tapia, J. A.: Diffusive mass transfer between a microporous medium and an homogeneous fluid: jump boundary conditions, Chem. eng. Sci. 61, No. 5, 1692-1704 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.