×

zbMATH — the first resource for mathematics

Chaotic attractors in incommensurate fractional order systems. (English) Zbl 1157.26310
A necessary condition is given to check the existence of chaos in fractional systems with incommensurable rational orders. It can be used as a tool to confirm or reject results of a numerical simulation.

MSC:
26A33 Fractional derivatives and integrals
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bagley, R.L.; Calico, R.A., Fractional order state equations for the control of visco-elastically damped structures, J. guid. control dyn., 14, 304-311, (1991)
[2] Rossikhin, Y.A.; Shitikova, M.V., Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass system, Acta mech., 120, 109-125, (1997) · Zbl 0901.73030
[3] Engheta, N., On fractional calculus and fractional multipoles in electromagnetism, IEEE trans. antennas propag., 44, 4, 554-566, (1996) · Zbl 0944.78506
[4] Arkhincheev, V.E., Anomalous diffusion in inhomogeneous media: some exact results, Modeling meas. control A, 26, 2, 11-29, (1993)
[5] El-Sayed, A.M.A., Fractional order diffusion wave equation, Int. J. theoret. phys., 35, 2, 311-322, (1996) · Zbl 0846.35001
[6] Le Méhauté, A.; Crepy, G., Introduction to transfer and motion in fractal media: the geometry of kinetics, Solid state ion., 9-10, 17-30, (1983)
[7] Nakagawa, M.; Sorimachi, K., Basic characteristics of a fractance device, IEICE trans. fundam., E75-A, 12, 1814-1819, (1992)
[8] Oldham, K.B.; Zoski, C.G., Analogue instrumentation for processing polarographic data, J. electroanal. chem., 157, 27-51, (1983)
[9] Chen, G.; Friedman, G., An RLC interconnect model based on Fourier analysis, IEEE trans. comput. aided des. integr. circuits syst., 24, 2, 170-183, (2005)
[10] Jenson, V.G.; Jeffreys, G.V., Mathematical methods in chemical engineering, (1977), Academic Press New York · Zbl 0413.00002
[11] K.S. Cole, Electric conductance of biological systems, in: Proc. Cold Spring Harbor Symp. Quant. Biol., Cold Spring Harbor, New York, 1993, pp. 107-116
[12] Laskin, N., Fractional market dynamics, Physica A, 287, 482-492, (2000)
[13] ()
[14] Podlubny, I., Fractional differential equations, (1999), Academic Press New York · Zbl 0918.34010
[15] Ahmad, W.; El-Khazali, R.; El-Wakil, A., Fractional order wien bridge oscillator, Electron. lett., 37, 1110-1112, (2001)
[16] S. Ramiro, J.A. Barbosa, T. Machado, M.I. Ferreira, K.J. Tar, Dynamics of the fractional order Van der Pol oscillator, in: Proceedings of the 2nd IEEE International Conference on Computational Cybernetics, ICCC’04, Aug. 30-Sep. 1, Vienna University of Technology, Austria, 2004, pp. 373-378
[17] Wang, Y.; Li, C., Does the fractional Brusselator with efficient dimension less than 1 have a limit cycle?, Phys. lett. A, 363, 414-419, (2007)
[18] Hartley, T.T.; Lorenzo, C.F.; Qammer, H.K., Chaos in a fractional order chua’s system, IEEE trans. circuits syst. I, 42, 485-490, (1995)
[19] P. Arena, R. Caponetto, L. Fortuna, D. Porto, Chaos in a fractional order Duffing system, in: Proceedings ECCTD, Budapest, Hungry, 1997, pp. 1259-1262
[20] Ahmad, W.M.; Sprott, J.C., Chaos in fractional order autonomous nonlinear systems, Chaos solitons fractals, 16, 339-351, (2003) · Zbl 1033.37019
[21] Grigorenko, I.; Grigorenko, E., Chaotic dynamics of the fractional Lorenz system, Phys. rev. lett., 91, 034101, (2003)
[22] Li, C.; Chen, G., Chaos in the fractional order Chen system and its control, Chaos solitons fractals, 22, 3, 549-554, (2004) · Zbl 1069.37025
[23] Lu, J.G., Chaotic dynamics of the fractional order Lü system and its synchronization, Phys. lett. A, 354, 4, 305-311, (2006)
[24] Li, C.; Chen, G., Chaos and hyperchaos in the fractional order Rössler equations, Physica A, 341, 55-61, (2004)
[25] Lu, J.G., Chaotic dynamics and synchronization of fractional order arneodo’s systems, Chaos solitons fractals, 26, 4, 1125-1133, (2005) · Zbl 1074.65146
[26] Sheu, L.J.; Chen, H.K.; Chen, J.H.; Tam, L.M.; Chen, W.C.; Lin, K.T.; Kang, Y., Chaos in the newton – leipnik system with fractional order, Chaos solitons fractals, 36, 98-103, (2008) · Zbl 1152.37319
[27] Lu, J.G., Chaotic dynamics and synchronization of fractional order genesio – tesi systems, Chinese J. phys., 14, 1517-1521, (2005)
[28] Lu, J.G., Chaotic dynamics of the fractional order ikeda delay system and its synchronization, Chinese J. phys., 15, 301-305, (2006)
[29] Arena, P.; Caponetto, R.; Fortuna, L.; Porto, D., Bifurcation and chaos in noninteger order cellular neural networks, Internat. J. bifur. chaos, 8, 7, 1527-1539, (1998) · Zbl 0936.92006
[30] Tavazoei, M.S.; Haeri, M., A necessary condition for double scroll attractor existence in fractional order systems, Phys. lett. A, 367, 1-2, 102-113, (2007) · Zbl 1209.37037
[31] Tavazoei, M.S.; Haeri, M., Unreliability of frequency-domain approximation in recognizing chaos in fractional-order systems, IET signal process., 1, 4, 171-181, (2007)
[32] D. Matignon, Stability results for fractional differential equations with applications to control processing, in: Computational Engineering in Systems and Application multi-conference, vol. 2, IMACS, IEEE-SMC Proceedings, Lille, France, July 1996, pp. 963-968
[33] Ahmed, E.; El-Sayed, A.M.A.; El-Saka, H.A.A., Equilibrium points, stability and numerical solutions of fractional order predator – prey and rabies models, J. math. anal. appl., 325, 542-553, (2007) · Zbl 1105.65122
[34] Deng, W.; Li, C.; Lü, J., Stability analysis of linear fractional differential system with multiple time delays, Nonlinear dynam., 48, 409-416, (2007) · Zbl 1185.34115
[35] Chua, L.O.; Komuro, M.; Matsumoto, T., The double scroll family, IEEE trans. circuits syst., 33, 1072-1118, (1986) · Zbl 0634.58015
[36] Silva, C.P., Shil’nikov’s theorem—A tutorial, IEEE trans. circuits syst. I, 40, 675-682, (1993) · Zbl 0850.93352
[37] Cafagna, D.; Grassi, G., New 3-D-scroll attractors in hyperchaotic chua’s circuit forming a ring, Internat. J. bifurc. chaos, 13, 10, 2889-2903, (2003) · Zbl 1057.37026
[38] Lü, J.; Chen, G.; Yu, X.; Leung, H., Design and analysis of multi-scroll chaotic attractors from saturated function series, IEEE trans. circuits syst. I, 51, 12, 2476-2490, (2004) · Zbl 1371.37060
[39] Deng, W.; Lü, J., Design of multidirectional multi-scroll chaotic attractors based on fractional differential systems via switching control, Chaos, 16, 043120, (2006) · Zbl 1146.37316
[40] Deng, W.; Lü, J., Generating multidirectional multi-scroll chaotic attractors via a fractional differential hysteresis system, Phys. lett. A, 369, 438-443, (2007) · Zbl 1209.37032
[41] Yorke, J.A.; Yorke, E.D., Metastable chaos: the transition to sustained chaotic oscillation in a model of Lorenz, J. statist. phys., 21, 263-277, (1979)
[42] Diethelm, K.; Ford, N.J.; Freed, A.D., A predictor – corrector approach for the numerical solution of fractional differential equations, Nonlinear dynam., 29, 3-22, (2002) · Zbl 1009.65049
[43] Rössler, O.E., An equation for continuous chaos, Phys. lett. A, 57, 5, 397-398, (1976) · Zbl 1371.37062
[44] Chen, G.; Ueta, T., Yet another attractor, Internat. J. bifurc. chaos, 9, 1465-1466, (1999) · Zbl 0962.37013
[45] Lü, J.; Chen, G.; Cheng, D.; Celikovsky, S., Bridge the gap between the Lorenz system and the Chen system, Internat. J. bifurc. chaos, 12, 12, 2917-2926, (2002) · Zbl 1043.37026
[46] Chen, W.C., Nonlinear dynamics and chaos in a fractional order financial system, Chaos solitons fractals, 36, 1305-1314, (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.