×

Universal index theorem on \(\mathrm{M\"ob}(S^1)\setminus \mathrm{Diff}_+(S^1)\). (English) Zbl 1157.30015

Author’s summary: By conformal welding, there is a pair of univalent functions \((f,g)\) associated to every point of the complex Kähler manifold \(\text{Möb}(S^1)\setminus\text{Diff}_+(S^1)\). For every integer \(n\geq 1\), we generalize the definition of Faber polynomials to define some canonical bases of holomorphic \((1 - n)\)- and \(n\)-differentials associated to the pair \((f,g)\). Using these bases, we generalize the definition of Grunsky matrices to define matrices whose columns are the coefficients of the differentials with respect to standard bases of differentials on the unit disc and the exterior unit disc. We derive some identities among these matrices which are reminiscent of the Grunsky equality. By using these identities, we showed that we can define the Fredholm determinants of the period matrices of holomorphic \(n\)-differentials \(N_n\), which are the Gram matrices of the canonical bases of holomorphic \(n\)-differentials with respect to the inner product given by the hyperbolic metric. Finally we proved that \(\det N_n=(\det N_{1})^{6n^{2} - 6n+1}\) and \(\partial \overline{\partial }\log \det N_n\) is \(-(6n^2-6n+1)/(6\pi i) \) of the Weil-Petersson symplectic form.

MSC:

30C55 General theory of univalent and multivalent functions of one complex variable
58J52 Determinants and determinant bundles, analytic torsion
45B05 Fredholm integral equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bers, Lipman, A non-standard integral equation with applications to quasiconformal mappings, Acta Math., 116, 113-134 (1966) · Zbl 0145.09502
[2] Duren, P. L., (Univalent Functions. Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259 (1983), Springer-Verlag: Springer-Verlag New York)
[3] Hummel, J. A., Inequalities of Grunsky type for Aharonov pairs, J. Anal. Math., 25, 217-257 (1972) · Zbl 0273.30011
[4] Kirillov, A. A., Kähler structure on the \(K\)-orbits of a group of diffeomorphisms of the circle, Funkts. Anal. i Prilozhen., 21, 2, 42-45 (1987)
[5] Kirillov, A. A.; Yuriev, D. V., Representations of the Virasoro algebra by the orbit method, J. Geom. Phys., 5, 3, 351-363 (1988) · Zbl 0698.17015
[6] Mcintyre, Andrew; Takhtajan, LeonA., Holomorphic factorization of determinants of Laplacians on Riemann surfaces and a higher genus generalization of Kronecker’s first limit formula, Geom. Funct. Anal., 16, 1291-1323 (2006) · Zbl 1110.58026
[7] Mcintyre, Andrew; Teo, Lee-Peng, Holomorphic factorization of determinants of laplacians using quasi-fuchsian uniformization, Lett. Math. Phys., 83, 41-58 (2008) · Zbl 1154.30035
[8] Mumford, David, Stability of projective varieties, Enseignement Math. (2), 23, 1-2, 39-110 (1977) · Zbl 0363.14003
[9] Nag, Subhashis, The Complex Analytic Theory of Teichmüller Spaces (1988), John Wiley & Sons Inc., A Wiley-Interscience Publication: John Wiley & Sons Inc., A Wiley-Interscience Publication New York · Zbl 0667.30040
[10] Nag, Subhashis, A period mapping in universal Teichmüller space, Bull. Amer. Math. Soc. (N.S.), 26, 2, 280-287 (1992) · Zbl 0749.32013
[11] Nag, Subhashis; Sullivan, Dennis, Teichmüller theory and the universal period mapping via quantum calculus and the \(H^{1 / 2}\) space on the circle, Osaka J. Math., 32, 1, 1-34 (1995) · Zbl 0820.30027
[12] Pommerenke, C., Univalent Functions (1975), Vandenhoeck & Ruprecht: Vandenhoeck & Ruprecht Göttingen, With a chapter on quadratic differentials by Gerd Jensen, Studia Mathematica/Mathematische Lehrbücher, Band XXV · Zbl 0165.09602
[13] Schiffer, M., The Fredholm eigen values of plane domains, Pacific J. Math., 7, 1187-1225 (1957) · Zbl 0138.30003
[14] Schiffer, M.; Hawley, N. S., Connections and conformal mapping, Acta Math., 107, 175-274 (1962) · Zbl 0115.29301
[15] Teo, Lee-Peng, Analytic functions and integrable hierarchies—characterization of tau functions, Lett. Math. Phys., 64, 1, 75-92 (2003) · Zbl 1021.37040
[16] Teo, Lee-Peng, The Velling-Kirillov metric on the universal Teichmüller curve, J. Anal. Math., 93, 271-307 (2004) · Zbl 1079.30064
[17] Lee-Peng Teo, Universal index theorem on \(\text{Möb} ( S^1 ) \smallsetminus \operatorname{Diff}_+ ( S^1 )\), Preprint arXiv: math-ph/0611064; Lee-Peng Teo, Universal index theorem on \(\text{Möb} ( S^1 ) \smallsetminus \operatorname{Diff}_+ ( S^1 )\), Preprint arXiv: math-ph/0611064
[18] Teo, L.-P.; Takhtajan, L. A., Weil-Petersson metric on the universal Teichmüller space, Mem. Amer. Math. Soc., 183, 861 (2006), vi+119 · Zbl 1243.32010
[19] Takhtajan, L. A.; Zograf, P. G., A local index theorem for families of \(\overline{\partial} \)-operators on punctured Riemann surfaces and a new Kähler metric on their moduli spaces, Comm. Math. Phys., 137, 2, 399-426 (1991) · Zbl 0725.58043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.