×

Existence and asymptotic behavior of positive solution to a quasilinear elliptic problem in \(\mathbb R^N\). (English) Zbl 1157.35366

Summary: The main purpose of this paper is to obtain the existence result concerning the problem \(- \Delta _pu=a(x)f(u)\) in \(\mathbb R^N\), where \(N>2\). The proofs of the main theorems are based on the results due to Diaz-Saà [J. I. Diaz and J. E. Saà, C. R. Acad. Sci., Paris, Sér. I 305, 521–524 (1987; Zbl 0656.35039)].

MSC:

35J60 Nonlinear elliptic equations
35B40 Asymptotic behavior of solutions to PDEs

Citations:

Zbl 0656.35039
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Agmon, S., The \(L_p\) approach to the Dirichlet problem, Ann. sc. norm. super. Pisa, 13, 405-448, (1959) · Zbl 0093.10601
[2] Barles, G., Remarks on uniqueness results of the first eigenvalue of the \(p\)-Laplacian, Ann. fac. sci. Toulouse Sér. 5, 9, 1, 65-75, (1988) · Zbl 0621.35068
[3] Brezis, H.; Oswald, L., Remarks on sublinear elliptic equations, Nonlinear anal. TMA, 10, 55-64, (1986) · Zbl 0593.35045
[4] Cirstea, F.; Radulescu, V., Existence and uniqueness of positive solutions to a semilinear elliptic problem in \(R^N\), J. math. anal. appl., 229, 417-425, (1999) · Zbl 0921.35054
[5] K. Chaib, Quelques résultats sur les systčmes d’équations aux dérivées partielles faisant intervenir l’opérateur p-Laplacien, Thčse, Université Paul Sabatier - Toulouse III - (2002-04-23)
[6] Crandall, M.G.; Rabinowitz, P.H.; Tartar, L., On a Dirichlet problem with a singular nonlinearity, Comm. partial differential equations, 2, 193-222, (1977) · Zbl 0362.35031
[7] Diaz, J.I.; Saà, J.E., Existence et unicite de solutions positives pour certaines equations elliptiques quasilineaires, CRAS 305 serie I, 521-524, (1987) · Zbl 0656.35039
[8] DiBenedetto, E., \(C^{1, \alpha}\)- local regularity of weak solutions of degenerate elliptic equations, Nonlinear anal., 7, 827-850, (1983) · Zbl 0539.35027
[9] Dinu, T.L., Entire solutions of sublinear elliptic equations in anisotropic media, J. math. anal. appl., 322, 1, 382-392, (2006) · Zbl 1143.35038
[10] Gilbarg, D.; Trudinger, N., Elliptic partial differential equations of second order, (1983), Springer-Verlag Berlin · Zbl 0562.35001
[11] Goncalves, J.V.; Santos, C.A., Existence and asymptotic behavior of non-radially symmetric ground states of semilinear singular elliptic equations, Nonlinear anal., 65, 719-727, (2006) · Zbl 1245.35045
[12] Goncalves, J.V.; Santos, C.A., Positive solutions for a class of quasilinear singular equations, Electron. J. differential equations, 2004, 56, 1-15, (2004)
[13] Kusano, T.; Swanson, C.A., Entire positive solutions of singular semilinear elliptic equations, Japan J. math., 11, 145-155, (1985) · Zbl 0585.35034
[14] Lair, A.V.; Shaker, A.W., Entire solutions of a singular semilinear elliptic problem, J. math. anal. appl., 200, 498-505, (1996) · Zbl 0860.35030
[15] Lazer, A.C.; McKenna, P.J., On a singular nonlinear elliptic boundary value problem, Proc. amer. math. soc., 111, 721-730, (1991) · Zbl 0727.35057
[16] Lieberman, G.M., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear anal., 12, 11, 1203-1219, (1988) · Zbl 0675.35042
[17] Shaker, A.W., On singular semilinear elliptic equations, J. math. anal. appl., 173, 222-228, (1993) · Zbl 0785.35032
[18] Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations, J. differential equations, 51, 126-150, (1984) · Zbl 0488.35017
[19] Sun, Y.; Li, S., Structure of ground state solutions of singular semilinear elliptic equations, Nonlinear anal., 55, 399-417, (2003) · Zbl 1122.35341
[20] Ural’tseva, N., Degenerate quasilinear elliptic systems, Zap. naučn. sem. leningrad. otdel. mat. inst. Steklov., 7, 184-222, (1968) · Zbl 0199.42502
[21] Vázquez, J.L., A strong maximum principle for some quasilinear elliptic equations, Appl. math. optim., 12, 191-202, (1984) · Zbl 0561.35003
[22] Zhang, Z., A remark on the existence of entire solutions of a singular semilinear elliptic problem, J. math. anal. appl., 215, 579-582, (1997) · Zbl 0891.35042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.