×

Bootstrap approach to the multi-sample test of means with imprecise data. (English) Zbl 1157.62391

Summary: A bootstrap approach to the multi-sample test of means for imprecisely valued sample data is introduced. For this purpose imprecise data are modelled in terms of fuzzy values. Populations are identified with fuzzy-valued random elements, often referred to in the literature as fuzzy random variables. An example illustrates the use of the suggested method. Finally, the adequacy of the bootstrap approach to test the multi-sample hypothesis of means is discussed through a simulation comparative study.

MSC:

62G09 Nonparametric statistical resampling methods
62G10 Nonparametric hypothesis testing
62J10 Analysis of variance and covariance (ANOVA)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Babu, G.J.; Singh, K., Inference on means using the bootstrap, Ann. statist., 11, 999-1003, (1983) · Zbl 0539.62043
[2] Bertoluzza, C.; Corral, N.; Salas, A., On a new class of distances between fuzzy numbers, Mathware soft comput., 2, 71-84, (1995) · Zbl 0887.04003
[3] Billingsley, P., Probability and measure, (1995), Wiley New York · Zbl 0822.60002
[4] Colubi, A.; Domínguez-Menchero, J.S.; López-Díaz, M.; Gil, M.A., A generalized strong law of large numbers, Probab. theory related fields, 114, 401-417, (1999) · Zbl 0933.60023
[5] Colubi, A.; Domínguez-Menchero, J.S.; López-Díaz, M.; Ralescu, D.A., On the formalization of fuzzy random variables, Inform. sci., 133, 3-6, (2001) · Zbl 0988.28008
[6] Colubi, A.; Domínguez-Menchero, J.S.; López-Díaz, M.; Ralescu, D.A., A \(D_E [0, 1]\)-representation of random upper semicontinuous functions, Proc. amer. math. soc., 130, 3237-3242, (2002) · Zbl 1005.28003
[7] Colubi, A.; Fernández-García, C.; Gil, M.A., Simulation of random fuzzy variables: an empirical approach to statistical/probabilistic studies with fuzzy experimental data, IEEE trans. fuzzy sys., 10, 384-390, (2002)
[8] Cox, E., The fuzzy systems handbook, (1994), Academic Press Cambridge
[9] Cuevas, A.; Febrero, M.; Fraiman, R., An anova test for functional data, Comput. statist. data anal., 47, 111-122, (2004) · Zbl 1429.62726
[10] Diamond, P.; Kloeden, P., Metric spaces of fuzzy sets: theory and applications, (1994), World Scientific Singapore · Zbl 0873.54019
[11] Efron, B.; Tibsirani, R.J., An introduction to the bootstrap, (1998), Chapman & Hall Boca Raton
[12] Gil, M.A.; López-Díaz, M., Fundamentals and Bayesian analyzes of decision problems with fuzzy-valued utilities, Internat. J. approx. reason, 15, 203-224, (1996) · Zbl 0949.91504
[13] Gil, M.A.; López-Díaz, M.; Rodríguez-Muñiz, L.J., An improvement of a comparison of experiments in statistical decision problems with fuzzy utilities, IEEE trans. sys. man cybernet., 28A, 856-864, (1998)
[14] González-Rodríguez, G., Montenegro, M., Colubi, A., Gil, M.A., 2006a. Bootstrap techniques and fuzzy random variables: synergy in hypothesis testing with fuzzy data. Fuzzy Sets and Systems, in press.
[15] González-Rodríguez, G., Colubi, A., Gil, M.A., 2006b. A fuzzy representation of random variables: an operational tool in exploratory analysis and hypothesis testing. Comput. Statist. Data Anal., in this issue.
[16] Körner, R., An asymptotic \(\alpha\)-test for the expectation of random fuzzy variables, J. statist. plann. inference, 83, 331-346, (2000) · Zbl 0976.62013
[17] Körner, R.; Näther, W., On the variance of random fuzzy variables, (), 22-39
[18] Krätschmer, V., Some complete metrics on spaces of fuzzy subsets, Fuzzy sets and systems, 130, 357-365, (2002) · Zbl 1046.54003
[19] Krätschmer, V., Probability theory in fuzzy sample spaces, Metrika, 60, 167-189, (2004) · Zbl 1083.60004
[20] Krätschmer, V. 2006. Integrals of random fuzzy sets. Test 16(1), in press.
[21] Kruse, R.; Meyer, K.D., Statistics with vague data, (1987), Reidel Dordrecht · Zbl 0663.62010
[22] Kruse, R.; Gebhardt, J.; Gil, M.A., Fuzzy statistics, (), 181-196
[23] Kwakernaak, H., Fuzzy random variables. part I: definitions and theorems, Inform. sci., 15, 1-29, (1978) · Zbl 0438.60004
[24] Kwakernaak, H., Fuzzy random variables. part II: algorithms and examples for the discrete case, Inform. sci., 17, 253-278, (1979) · Zbl 0438.60005
[25] López-Díaz, M., Ralescu, D.A., 2006. Tools for fuzzy random variables: embeddings and measurabilities. Comput. Statist. Data Anal., in this issue.
[26] Molchanov, I., On strong laws of large numbers for random upper semicontinuous functions, J. math. anal. appl., 235, 349-355, (1999) · Zbl 0959.60003
[27] Montenegro, M.; Casals, M.R.; Lubiano, M.A.; Gil, M.A., Two-sample hypothesis tests of means of a fuzzy random variable, Inform. sci., 133, 89-100, (2001) · Zbl 1042.62012
[28] Montenegro, M.; González-Rodríguez, G.; Gil, M.A.; Colubi, A.; Casals, M.R., Introduction to ANOVA with fuzzy random variables, (), 487-494 · Zbl 1055.62084
[29] Montenegro, M.; Colubi, A.; Casals, M.R.; Gil, M.A., Asymptotic and bootstrap techniques for testing the expected value of a fuzzy random variable, Metrika, 59, 31-49, (2004) · Zbl 1052.62048
[30] Puri, M.L.; Ralescu, D.A., Différentielle d’une fonction floue, C.R. acad. sci. Paris, Sér. A, 293, 237-239, (1981) · Zbl 0489.46038
[31] Puri, M.L.; Ralescu, D.A., The concept of normality for fuzzy random variables, Ann. probab., 11, 1373-1379, (1985) · Zbl 0583.60011
[32] Puri, M.L.; Ralescu, D.A., Fuzzy random variables, J. math. anal. appl., 114, 409-422, (1986) · Zbl 0592.60004
[33] Rao, C.R., Linear statistical inference and its applications, (1973), Wiley New York
[34] Serfling, R.J., Approximation theorems of mathematical statistics, (1980), Wiley New York · Zbl 0538.62002
[35] Shao, J.; Tu, D., The jackknife and bootstrap, (1995), Springer New York · Zbl 0947.62501
[36] Yager, R.R., A procedure for ordering fuzzy subsets of the unit interval, Inform. sci., 24, 143-161, (1981) · Zbl 0459.04004
[37] Zadeh, L.A., The concept of a linguistic variable and its application to approximate reasoning, part 1, Inform. sci., 8, 199-249, (1975), Part 2. Inform Sci. 8, 301-353; Part 3. Inform. Sci. 9, 43-80 · Zbl 0397.68071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.