Which spaces for design? (English) Zbl 1157.65016

Author’s abstract: We determine the largest class of spaces of sufficient regularity which are suitable for design in the sense that they do possess blossoms. It is the class of all spaces containing constants of which the spaces derived under differentiation are quasi extended Chebyshev spaces, i.e., they permit Hermite interpolation, Taylor interpolation excepted. It is also the class of all spaces which possess Bernstein bases, or of all spaces for which any associated spline space does possess a B-spline basis. Note that blossoms guarantee that such bases are normalised totally positive bases. They even are the optimal ones.


65D17 Computer-aided design (modeling of curves and surfaces)
65D05 Numerical interpolation
Full Text: DOI


[1] Carnicer J.-M., Peña J.-M.: Total positivity and optimal bases. In: Gasca, M., Micchelli , C.A.(eds) Total Positivity and its Applications, pp. 133–155. Kluwer, Dordrecht (1996) · Zbl 0892.15002
[2] Costantini P.: On monotone and convex spline interpolation. Math. Comp. 46, 203–214 (1986) · Zbl 0617.41015
[3] Costantini P.: Shape preserving interpolation with variable degree polynomial splines. In: Hoscheck, J., Kaklis, P.(eds) Advanced Course on FAIRSHAPE, pp. 87–114. B.G. Teubner, Stuttgart (1996) · Zbl 0867.68107
[4] Costantini P.: Variable degree polynomial splines. In: Le Méhauté, A., Rabut, C., Schumaker, L.L.(eds) Curves and Surfaces with Applications in CAGD., pp. 85–94. Vanderbilt University Press, Nashville (1997) · Zbl 0938.65018
[5] Costantini P.: Curve and surface construction using variable degree polynomial splines. Comp. Aided Geom. Des. 17, 419–446 (2000) · Zbl 0938.68128
[6] Costantini, P., Manni, C.: On constrained nonlinear Hermite subdivision. Const. Approx. (to appear) · Zbl 1177.65021
[7] Costantini P., Lyche T., Manni C.: On a class of weak Tchebycheff systems. Numer. Math. 101, 333–354 (2005) · Zbl 1085.41002
[8] Goodman T.N.T., Mazure M.-L.: Blossoming beyond extended Chebyshev spaces. J. Approx. Theory 109, 48–81 (2001) · Zbl 0996.41005
[9] Kaklis P.D., Pandelis D.G.: Convexity preserving polynomial splines of non-uniform degree. IMA J. Num. Anal. 10, 223–234 (1990) · Zbl 0699.65007
[10] Karlin S.: Total Positivity. Stanford Univ. Press, Stanford (1968)
[11] Karlin S.J., Studden W.J.: Tchebycheff Systems: With Applications in Analysis and Statistics. Wiley Interscience, New York (1966) · Zbl 0153.38902
[12] Kayumov A., Mazure M.-L.: Chebyshevian splines: interpolation and blossoms. Comptes Rendus Acad. Sci. 344, 65–70 (2007) · Zbl 1106.41010
[13] Lyche T.: A recurrence relation for Chebyshevian B-splines. Constr. Approx. 1, 155–178 (1985) · Zbl 0583.41011
[14] MacDonald I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Clarendon Press, Oxford (1995) · Zbl 0824.05059
[15] Mazure M.-L.: Quasi-Chebyshev splines with connexion matrices. Application to variable degree polynomial splines. Comp. Aided Geom. Des. 18, 287–298 (2001) · Zbl 0978.41006
[16] Mazure M.-L.: Blossoms and optimal bases. Adv. Comp. Math. 20, 177–203 (2004) · Zbl 1042.65016
[17] Mazure M.-L.: Chebyshev spaces and Bernstein bases. Const. Approx. 22, 347–363 (2005) · Zbl 1116.41006
[18] Mazure, M.-L.: Ready-to-blossom bases in Chebyshev spaces. In: Jetter, K., Buhmann, M., Haussmann, W., Schaback, R., Stoeckler, J. (eds.) Topics in Multivariate Approximation and Interpolation, vol. 12, pp. 109–148. Elsevier, Amsterdam (2006)
[19] Mazure M.-L.: On Chebyshevian spline subdivision. J. Approx. Theory 143, 74–110 (2006) · Zbl 1106.41012
[20] Mazure, M.-L.: Understanding recurrence relations for Chebyshevian B-splines via blossoms. J. Comp. Appl. Math. (to appear) · Zbl 1149.41004
[21] Mazure M.-L.: On dimension elevation in Quasi extended Chebyshev spaces. Num. Math. 109, 459–475 (2008) · Zbl 1144.65013
[22] Mazure, M.-L., Pottmann, H.: Tchebycheff curves. In: Total positivity and its applications, pp. 187–218. Kluwer, Dordrecht (1996) · Zbl 0902.41018
[23] Pottmann H.: The geometry of Tchebycheffian splines. Comp. Aided Geom. Des. 10, 181–210 (1993) · Zbl 0777.41016
[24] Ramshaw L.: Blossoms are polar forms. Comp. Aided Geom. Des. 6, 323–358 (1989) · Zbl 0705.65008
[25] Schumaker L.L.: Spline Functions. Wiley Interscience, New York (1981) · Zbl 0449.41004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.