×

Overcoming the limitations of adaptive control by means of logic-based switching. (English) Zbl 1157.93440

Summary: We describe a framework for deterministic adaptive control which involves logic-based switching among a family of candidate controllers. We compare it with more conventional adaptive control techniques that rely on continuous tuning, emphasizing how switching and logic can be used to overcome some of the limitations of traditional adaptive control. The issues are discussed in a tutorial, non-technical manner and illustrated with specific examples.

MSC:

93C65 Discrete event control/observation systems
93D21 Adaptive or robust stabilization
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Anderson, B.D.O.; Brinsmead, T.S.; Bruyne, F.D.; Hespanha, J.P.; Liberzon, D.; Morse, A.S., Multiple model adaptive control, part 1finite controller coverings, Internat. J. robust nonlinear control, 10, 909-929, (2000) · Zbl 0981.93036
[2] Anderson, B.D.O.; Brinsmead, T.S.; Liberzon, D.; Morse, A.S., Multiple model adaptive control with safe switching, Internat. J. adaptive control signal process., 15, 445-470, (2001) · Zbl 0995.93044
[3] Annaswamy, A.M.; Skantze, F.P.; Loh, A.-P., Adaptive control of continuous time systems with convex/concave parametrization, Automatica, 34, 33-49, (1998) · Zbl 0910.93049
[4] Borrelli, D.; Morse, A.S.; Mosca, E., Discrete-time supervisory control of families of two-degrees-of-freedom linear set-point controllers, IEEE trans. automat. control, 44, 1, 178-181, (1998) · Zbl 1056.93557
[5] Brockett, R.W., Asymptotic stability and feedback stabilization, (), 181-191 · Zbl 0528.93051
[6] Chang, G.; Hespanha, J.P.; Morse, A.S.; Netto, M.; Ortega, R., Supervisory field-oriented control of induction motors with uncertain rotor resistance, Internat. J. adaptive control signal process., 15, 3, 353-375, (2001), (Special Issue on Switching and Logic) · Zbl 0992.93062
[7] Colbaugh, R.; Glass, K., Stabilization of nonholonomic robotic systems using adaptation and homogeneous feedback, J. intell. robotic systems, 26, 1-27, (1999)
[8] Dahleh, M.A.; Livstone, M.M., A unified framework for identification and control, (), 196-214 · Zbl 0819.93022
[9] Freeman, R.A.; Kokotović, P.V., Inverse optimality in robust stabilization, SIAM J. control optim., 34, 1365-1391, (1996) · Zbl 0863.93075
[10] Fu, M.; Barmish, B.R., Adaptive stabilization of linear systems via switching control, IEEE trans. automat. control, 31, 1097-1103, (1986) · Zbl 0607.93041
[11] J.P. Hespanha, Logic-based switching algorithms in control, Ph.D. Thesis, Department of Electrical Engineering, Yale University, New Haven, CT, 1998.
[12] J.P. Hespanha, Tutorial on supervisory control, Lecture Notes for the Workshop Control using Logic and Switching for the 40th Conference on Decision and Control, Orlando, FL, December 2001.
[13] Hespanha, J.P.; Liberzon, D.; Morse, A.S., Logic-based switching control of a nonholonomic system with parametric modeling uncertainty, Systems control lett., 38, 3, 167-177, (1999), (Special Issue on Hybrid Systems) · Zbl 0948.93011
[14] Hespanha, J.P.; Liberzon, D.; Morse, A.S., Supervision of integral-input-to-state stabilizing controllers, Automatica, 38, 8, 1327-1335, (2002) · Zbl 1172.93394
[15] Hespanha, J.P.; A.S. Morse, D.Liberzon; Anderson, B.D.O.; Brinsmead, T.S.; deBruyne, F., Multiple model adaptive control, part 2switching, Internat. J. robust nonlinear control, 11, 5, 479-496, (2001), (Special Issue on Hybrid Systems in Control)
[16] Hespanha, J.P.; Morse, A.S., Certainty equivalence implies detectability, Systems control lett., 36, 1, 1-13, (1999) · Zbl 0913.93037
[17] J.P. Hespanha, A.S. Morse, Stability of switched systems with average dwell-time, in: Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ, 1999, pp. 2655-2660.
[18] Hockerman-Frommer, J.; Kulkarni, S.R.; Ramadge, P.J., Controller switching based on output prediction errors, IEEE trans. automat. control, 43, 5, 596-607, (1998) · Zbl 0911.93037
[19] Ioannou, P.A.; Sun, J., Robust adaptive control, (1996), Prentice-Hall Englewood Cliffs, NJ
[20] Jiang, Z.P.; Pomet, J.-B., Global stabilization of parametric chained-form systems by time-varying dynamic feedback, Internat. J. adaptive control signal process., 10, 47-59, (1996) · Zbl 0866.93093
[21] Kosmatopoulos, E.B.; Ioannou, P., A switching adaptive controller for feedback linearizable systems, IEEE trans. automat. control, 44, 4, 742-750, (1999) · Zbl 0957.93073
[22] Kosut, R.; Lau, M.; Boyd, S., Set-membership identification of systems with parametric and nonparametric uncertainty, IEEE trans. automat. control, 37, 7, 929-941, (1992) · Zbl 0767.93016
[23] R.L. Kosut, Iterative unfalsified adaptive control: analysis of the disturbance-free case, in: Proceedings of the 1999 American Control Conference, San Diego, CA, 1999, pp. 566-570.
[24] Kulkarni, S.R.; Ramadge, P.J., Model and controller selection policies based on output prediction errors, IEEE trans. automat. control, 41, 11, 1594-1604, (1996) · Zbl 0868.93032
[25] D. Liberzon’s homepage, http://black.csl.uiuc.edu/ liberzon/research/parkingmovie.mpg.
[26] D. Liberzon, J.P. Hespanha, A.S. Morse, Hierarchical hysteresis switching, in: Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, 2000, pp. 484-489.
[27] Liberzon, D.; Morse, A.S.; Sontag, E.D., Output-input stability and minimum-phase nonlinear systems, IEEE trans. automat. control, 47, 422-436, (2002) · Zbl 1364.93727
[28] Mårtensson, B., The order of any stabilizing regulator is sufficient a priori information for adaptive stabilization, Systems control lett., 6, 87-91, (1985) · Zbl 0564.93055
[29] Middleton, R.H.; Goodwin, G.C.; Hill, D.J.; Mayne, D.Q., Design issues in adaptive control, IEEE trans. automat. control, 33, 50-58, (1988) · Zbl 0637.93040
[30] Miller, D.; Davison, E.J., An adaptive controller which provides an arbitrary good transient and steady-state response, IEEE trans. automat. control, 36, 1, 68-81, (1991) · Zbl 0725.93074
[31] Morse, A.S., Towards a unified theory of parameter adaptive controltunability, IEEE trans. automat. control, 35, 1002-1012, (1990) · Zbl 0724.93047
[32] Morse, A.S., Towards a unified theory of parameter adaptive control, part iicertainty equivalence and implicit tuning, IEEE trans. automat. control, 37, 15-29, (1992) · Zbl 0747.93047
[33] Morse, A.S., Control using logic-based switching, (), 69-113 · Zbl 0787.93059
[34] Morse, A.S., Logic-based switching and control, (), 173-195 · Zbl 0821.93004
[35] Morse, A.S., Supervisory control of families of linear set-point controllers—part 1exact matching, IEEE trans. automat. control, 41, 10, 1413-1431, (1996) · Zbl 0872.93009
[36] Morse, A.S., Supervisory control of families of linear set-point controllers—part 2robustness, IEEE trans. automat. control, 42, 11, 1500-1515, (1997) · Zbl 0926.93010
[37] Morse, A.S., A bound for the disturbance-to-tracking-error gain of a supervised set-point control system, (), 23-41 · Zbl 0965.93008
[38] Mosca, E.; Capecchi, F.; Casavola, A., Designing predictors for MIMO switching supervisory control, Internat. J. adaptive control signal process., 15, 3, 265-286, (2001), (Special Issue on Switching and Logic) · Zbl 0984.93009
[39] Narendra, K.S.; Balakrishnan, J., Adaptive control using multiple models, IEEE trans. automat. control, 42, 2, 171-187, (1997) · Zbl 0869.93025
[40] F.M. Pait, Achieving tunability in parameter-adaptive control, Ph.D. Thesis, Department of Electrical Engineering, Yale University, New Haven, CT, 1993.
[41] Pait, F.M.; Kassab, F., Parallel algorithms for adaptive control: robust stability, (), 262-276 · Zbl 0881.93072
[42] Pait, F.M.; Kassab, F., On a class of switched, robustly stable, adaptive systems, Internat. J. adaptive control signal process., 15, 3, 213-238, (2001), (Special Issue on Switching and Logic) · Zbl 0979.93064
[43] Pait, F.M.; Morse, A.S., A cyclic switching strategy for parameter-adaptive control, IEEE trans. automat. control, 39, 1172-1183, (1994) · Zbl 0809.93031
[44] Safonov, M.G., Focusing on the knowable: controller invalidation and learning, (), 224-233 · Zbl 0875.93235
[45] Safonov, M.G.; Tsao, T.-C., The unfalsified control concept: a direct path from experiment to controller, (), 196-214 · Zbl 0825.93031
[46] Sontag, E.D., Smooth stabilization implies coprime factorization, IEEE trans. automat. control, 34, 435-443, (1989) · Zbl 0682.93045
[47] Zames, G., Towards a general complexity-based theory of identification and adaptive control, (), 208-223 · Zbl 0883.93003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.