×

Parallelization of an Euler-Lagrange model using mixed domain decomposition and a mirror domain technique: application to dispersed gas-liquid two-phase flow. (English) Zbl 1158.76396

Summary: We report a parallel algorithm applicable to a Euler–Lagrange model embedding four-way coupling. The model describing the dispersed phase dynamics accounts for bubble–bubble collisions and is parallelized using a mirror domain technique while the pressure Poisson equation for the continuous phase is solved using a domain decomposition technique implemented in the PETSc library [S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, http://www.mcs.anl.gov/petsc (2001)]. The parallel algorithm is verified and it is found that it gives the same results for both phases as compared to the serial algorithm. Furthermore the algorithm shows good scalability up to 32 processors. Using the proposed method, a homogeneous bubbly flow in a laboratory scale bubble column can be simulated at very high gas hold-up (37%!) while consuming a reasonable amount of calculation wall time.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76T10 Liquid-gas two-phase flows, bubbly flows

Software:

PETSc; LAM-MPI
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc Web page: <http://www.mcs.anl.gov/petsc>; S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc Web page: <http://www.mcs.anl.gov/petsc>
[2] Deen, N. G.; Solberg, T.; Hjertager, B. H., Large eddy simulation of the gas-liquid flow in a square cross-sectioned bubble column, Chemical Engineering Science, 56, 6341-6349 (2001)
[3] Sokolichin, A.; Eigenberger, G., Gas-liquid flow in bubble columns and loop reactors: Part i. Detailed modelling and numerical simulation, Chemical Engineering Science, 49, 5735-5746 (1994)
[4] Pan, Y.; Dudukovic, M. P., Numerical investigation of gas-driven flow in 2-d bubble columns, AIChE Journal, 46, 434-449 (2000)
[5] Tomiyama, A.; Zun, H. H.I.; Makino, Y.; Sakaguchi, T., A three-dimensional particle tracking method for bubbly flow simulation, Nuclear Engineering and Design, 175, 77-86 (1997)
[6] Delnoij, E.; Lammers, F. A.; Kuipers, J. A.M.; van Swaaij, W. P.M., Dynamic simulation of dispersed gas-liquid two-phase flow using a discrete bubble model, Chemical Engineering Science, 52, 1429-1458 (1997)
[7] Darmana, D.; Deen, N. G.; Kuipers, J. A.M., Detailed modeling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model, Chemical Engineering Science, 60, 3383-3404 (2005)
[8] Kitagawa, A.; Murai, Y.; Yamamoto, F., Two-way coupling of Eulerian-Lagrangian model for dispersed multiphase flows using filtering functions, International Journal of Multiphase Flow, 27, 2129-2153 (2001) · Zbl 1137.76637
[9] Sommerfeld, M.; Bourloutski, E.; Bröder, D., Euler/Lagrange calculations of bubbly flows with consideration of bubble coalescence, The Canadian Journal of Chemical Engineering, 81, 508-518 (2003)
[10] M. Sommerfeld, Overview and fundamentals, in: V.K.I. for Fluid Mechanics, Theoretical and Experimental Modelling of Particulate Flow, Lecture Series No. 2000-6, 2000, pp. 1-62.; M. Sommerfeld, Overview and fundamentals, in: V.K.I. for Fluid Mechanics, Theoretical and Experimental Modelling of Particulate Flow, Lecture Series No. 2000-6, 2000, pp. 1-62.
[11] Enwald, H.; Peirano, E.; Almstedt, A. E.; Leckner, B., Simulation of the fluid dynamics of a bubbling fluidized bed. Experimental validation of the two fluid model and evaluation of a parallel multiblock solver, Chemical Engineering Science, 54, 311-328 (1999)
[12] Lindborg, H.; Eide, V.; Unger, S.; Henriksen, S. T.; Jakobsen, H. A., Parallelization and performance optimization of a dynamic pde fixed bed reactor model for practical application, Computers and Chemical Engineering, 28, 1585-1597 (2004)
[13] Hoomans, B. P.B.; Kuipers, J. A.M.; Briels, W. J.; van Swaaij, W. P.M., Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a hard-sphere approach, Chemical Engineering Science, 51, 1, 99-118 (1996)
[14] G. Burns, R. Daoud, J. Vaigl, LAM: an open cluster environment for MPI, in: Proceedings of Supercomputing Symposium, 1994, pp. 379-386. URL: <http://www.lam-mpi.org/download/files/lam-papers.tar.gz>; G. Burns, R. Daoud, J. Vaigl, LAM: an open cluster environment for MPI, in: Proceedings of Supercomputing Symposium, 1994, pp. 379-386. URL: <http://www.lam-mpi.org/download/files/lam-papers.tar.gz>
[15] Squyres, J. M.; Lumsdaine, A., A component architecture for LAM/MPI, (Proceedings, 10th European PVM/MPI Users’ Group Meeting, no. 2840 in Lecture Notes in Computer Science (2003), Springer-Verlag: Springer-Verlag Venice, Italy), 379-387
[16] Magnaudet, J.; Eames, I., The motion of high-Reynolds-number bubbles in inhomogeneous flows, Annual Reviews of Fluid Mechanics, 32, 659-708 (2000) · Zbl 0989.76082
[17] Jakobsen, H.; Sannæs, B.; Grevskott, S.; Svendsen, H., Modeling of vertical bubble-driven flows, Industrial and Engineering Chemistry Research, 36, 4052-4074 (1997)
[18] Jakobsen, H.; Lindborg, H.; Dorao, C., Modeling of bubble column reactors: progress and limitations, Industrial and Engineering Chemistry Research, 44, 5107-5151 (2005)
[19] Auton, T. R., Lift force on a spherical body in a rotational flow, Journal of Fluid Mechanics, 183, 199-218 (1987) · Zbl 0634.76021
[20] Tomiyama, A.; Tamai, H.; Zun, I.; Hosokawa, S., Transverse migration of single bubbles in simple shear flows, Chemical Engineering Science, 57, 1849-1858 (2002)
[21] Wellek, R. M.; Agrawal, A. K.; Skelland, A. H.P., Shape of liquid drops moving in liquid media, AIChE Journal, 12, 854-862 (1966)
[22] Tomiyama, A.; Matsuoka, T.; Fukuda, T.; Sakaguchi, T., A simple numerical method for solving an incompressible two-fluid model in a general curvilinear coordinate system, (Serizawa, A.; Fukano, T.; Bataille, J., Advances in Multiphase Flow (1995), Society of Petroleum Engineers Inc., Elsevier: Society of Petroleum Engineers Inc., Elsevier Amsterdam), 241-252
[23] Smagorinsky, J., General circulation experiment with the primitive equations, Monthly Weather Review, 91, 99-165 (1963)
[24] Allen, M. P.; Tildesley, D. J., Computer Simulation of Liquids (1987), Oxford Science Publications: Oxford Science Publications Oxford · Zbl 0703.68099
[25] van den Hengel, E. I.V.; Deen, N. G.; Kuipers, J. A.M., Application of coalescence and breakup models in a discrete bubble model for bubble columns, Ind. Eng. Chem. Res., 44, 5233-5245 (2005)
[26] Chesters, A. K., The modelling of coalescence processes in fluid-liquid dispersion: a review of current understanding, Trans. IChemE, 69, 259-270 (1991)
[27] Lee, C. H.; Erickson, L. E.; Glasgow, L. A., Bubble breakup and coalescence in turbulent gas-liquid dispersion, Chem. Eng. Commun, 59, 65-84 (1987)
[28] Prince, M. J.; Blanch, H. W., Bubble coalescence and break-up in air-sparged bubble columns, AIChE Journal, 36, 1485-1499 (1990)
[29] Kirkpatrick, R.; Lockett, M., Influence of approach velocity on bubble coalescence, Chemical Engineering Science, 29, 2362-2373 (1974)
[30] Chesters, A. K.; Hofman, G., Bubble coalescence in pure liquids, Applied Scientific Research, 38, 353-361 (1982) · Zbl 0487.76104
[31] Deen, N. G.; van Sint Annaland, M.; Kuipers, J. A.M., Multi-scale modeling of dispersed gas-liquid two-phase flow, Chemical Engineering Science, 59, 1853-1861 (2004)
[32] Peskin, C. S., Numerical analysis of blood flow in the heart, Journal of Computational Physics, 25, 220-252 (1977) · Zbl 0403.76100
[33] Patankar, S. V.; Spalding, D. B., A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transfer, 15, 1787-1806 (1972) · Zbl 0246.76080
[34] Centrella, J.; Wilson, J. R., Planar numerical cosmology. II. The difference equations and numerical tests, Astronomy & Astrophysics Journal Supplement Series, 54, 229-249 (1984)
[35] Delnoij, E.; Kuipers, J. A.M.; van Swaaij, W. P.M., A three-dimensional CFD model for gas-liquid bubble columns, Chemical Engineering Science, 54, 2217-2226 (1999)
[36] B.P.B. Hoomans, Granular dynamic of gas-solid two-phase flows, Ph.D. Thesis, University of Twente, 1999.; B.P.B. Hoomans, Granular dynamic of gas-solid two-phase flows, Ph.D. Thesis, University of Twente, 1999.
[37] S. Balay, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc Users Manual, Tech. Rep. ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2004.; S. Balay, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc Users Manual, Tech. Rep. ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2004.
[38] Balay, S.; Eijkhout, V.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing (1997), Birkhäuser Press: Birkhäuser Press Basel), 163-202 · Zbl 0882.65154
[39] Deng, G. B.; Piquet, J.; Vasseur, X.; Visonneau, M., A new fully coupled method for computing turbulent flows, Computers and Fluids, 30, 445-472 (2001) · Zbl 1058.76042
[40] Wachem, B. G.M. V.; Schouten, J. C., Experimental validation of 3-d Lagrangian vof model: bubble shape and rise velocity, AIChE Journal, 48, 12, 2744-2753 (2002)
[41] Gropp, W. D.; Kaushik, D. K.; Keyes, D. E.; Smith, B. F., High performance parallel implicit CFD, Journal of Parallel Computing, 27, 337-362 (2001) · Zbl 0971.68191
[42] P. Wang, S. Balay, K. Sepehmoori, J. Abate, B. Smith, G.A. Pope, A fully implicit parallel EOS compositional simulator for large scale reservoir simulation, in: SPE 15th Reservoir Simulation Symposium, Society of Petroleum Engineers Inc., 1999, pp. 63-71.; P. Wang, S. Balay, K. Sepehmoori, J. Abate, B. Smith, G.A. Pope, A fully implicit parallel EOS compositional simulator for large scale reservoir simulation, in: SPE 15th Reservoir Simulation Symposium, Society of Petroleum Engineers Inc., 1999, pp. 63-71.
[43] Kuipers, J. A.M.; van Duin, K. J.; van Beckum, F. P.H.; van Swaaij, W. P.M., Computer simulation of the hydrodynamics of a two dimensional gas-fluidized bed, Computer Chemical Engineering, 17, 839-858 (1993)
[44] Ferziger, J. H.; Peric, M., Computational Methods for Fluid Dynamics (1999), Springer: Springer New York · Zbl 0869.76003
[45] W.K. Harteveld, J.E. Julia, R.F. Mudde, H.E.A. van den Akker, Large scale vortical structures in bubble columns for gas fraction in the range of 5-25
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.