×

Semi-infinite programming, duality, discretization and optimality conditions. (English) Zbl 1158.90410

Summary: The aim of this article is to give a survey of some basic theory of semi-infinite programming. In particular, we discuss various approaches to derivations of duality, discretization, and first- and second-order optimality conditions. Some of the surveyed results are well known while others seem to be less noticed in that area of research.

MSC:

90C34 Semi-infinite programming
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] DOI: 10.1007/BF00934107 · Zbl 0416.90062
[2] Ben-Tal A, Math. Prog. Study 19 pp 39– (1982) · Zbl 0494.49020
[3] DOI: 10.1137/S1052623496306760 · Zbl 0990.90127
[4] Bonnans JF, Perturbation Analysis of Optimization Problems (2000)
[5] DOI: 10.1007/BF01584251 · Zbl 0469.90065
[6] DOI: 10.1007/BF01445166 · Zbl 0692.49018
[7] Cominetti R, Compt. Rend. Acad. Sci. Paris, Sér. I 321 pp 1631– (1995)
[8] Danskin JM, The Theory of Max–Min and its Applications to Weapons Allocation Problems (1967) · Zbl 0154.20009
[9] Glashoff K, Linear Optimization and Approximation (1983)
[10] Goberna MA, Linear Semi-Infinite Optimization (1998)
[11] DOI: 10.1016/S0377-2217(02)00327-2 · Zbl 1058.90067
[12] DOI: 10.1137/1035089 · Zbl 0784.90090
[13] DOI: 10.1137/0317021 · Zbl 0417.49029
[14] DOI: 10.1007/BF01580754 · Zbl 0661.49012
[15] DOI: 10.1007/BF01580771 · Zbl 0900.49011
[16] DOI: 10.1007/BF01588788 · Zbl 0726.90075
[17] DOI: 10.1016/0377-0427(94)90384-0 · Zbl 0823.90121
[18] Klatte D, Semi-infinite Programming pp 69– (1998)
[19] DOI: 10.1007/BF01586095 · Zbl 0566.90085
[20] Levin VL, Mat. Sbornik 79 pp 250– (1969)
[21] DOI: 10.1016/j.ejor.2006.08.045 · Zbl 1124.90042
[22] Polak E, Optimization, Algorithms and Consistent Approximations (1997)
[23] Reemtsen R, Semi-Infinite Programming (1998)
[24] Rockafellar RT, Convex Analysis (1970) · Zbl 0932.90001
[25] Rockafellar RT, in Regional Conference Series in Applied Mathematics (1974)
[26] DOI: 10.1098/rspa.1958.0062 · Zbl 0082.32404
[27] DOI: 10.1016/j.cam.2007.02.012 · Zbl 1190.90248
[28] DOI: 10.1007/BF00940933 · Zbl 0682.49015
[29] DOI: 10.1137/S1052623495279785 · Zbl 0872.90086
[30] DOI: 10.1080/02331930500342823 · Zbl 1147.90403
[31] Stein O, Bi-level Strategies in Semi-infinite Programming (2003) · Zbl 1103.90094
[32] Still G, Math. Progr. 91 pp 53– (2001)
[33] DOI: 10.1214/aoms/1177700153 · Zbl 0135.18701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.