×

zbMATH — the first resource for mathematics

A boundary integral equation for conformal mapping of bounded multiply connected regions. (English) Zbl 1159.30007
Summary: A boundary integral method is presented for constructing approximations to the mapping functions of bounded multiply connected regions to the standard canonical slit domains given by Z. Nehari [“Conformal Mapping”, (International Series in Pure and Applied Mathematics) New York-Toronto- London: McGraw-Hill Book Company, Inc. VIII, 396 p. (1952; Zbl 0048.31503)]. The method is based on expressing the mapping function in terms of the solution of a Riemann-Hilbert problem which can be solved by a uniquely solvable boundary integral equation with the generalized Neumann kernel. Three numerical examples are presented to show the effectiveness of the present method.

MSC:
30C30 Schwarz-Christoffel-type mappings
30E25 Boundary value problems in the complex plane
45B05 Fredholm integral equations
PDF BibTeX XML Cite
Full Text: DOI Link
References:
[1] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, Cambridge, 1997. · Zbl 0899.65077
[2] S. Bergman, The Kernel Function and Conformal Mapping, American Mathematical Society, Providence, 1970. · Zbl 0208.34302
[3] S. Ellacott, On the approximate conformal mapping of multiply connected domains, Numer. Math. 33 (1979), 437–446. · Zbl 0402.30007 · doi:10.1007/BF01399325
[4] D. Gaier, Konstruktive Methoden der konformen Abbildung, Springer, Berlin, 1964. · Zbl 0132.36702
[5] P. Henrici, Applied and Computational Complex Analysis, Vol. 3, John Wiley, New York, 1986. · Zbl 0578.30001
[6] C. A. Kokkinos, A unified orthonormalization method for the approximate conformal mapping of simply and multiply connected domains, in: N. Papamichael, St. Ruscheweyh and E. B. Saff (eds.), Computational Methods and Function Theory 1997, Ser. Approx. Decompos., World Sci. Publishing, River Edge, NJ, 1999, 327–344. · Zbl 0938.30004
[7] C.A. Kokkinos, N. Papamichael and A. B. Sideridis, An orthonormalization method for the approximate conformal mapping of multiply connected domains, IMA J. Numer. Anal. 10 (1990), 343–359. · Zbl 0703.30005 · doi:10.1093/imanum/10.3.343
[8] P. K. Kythe, Computational Conformal Mapping, Birkhäuser, Boston, 1998. · Zbl 0918.30001
[9] A. Mayo, Rapid methods for the conformal mapping of multiply connected regions, J. Comp. Appl. Math. 14 (1986), 143–153. · Zbl 0586.30009 · doi:10.1016/0377-0427(86)90135-4
[10] A. H. M. Murid and M. M. S. Nasser, Eigenproblem of the generalized Neumann kernel, Bull. Malaysia. Math. Sci. Soc. second series 26 (2003), 13–33. · Zbl 1185.45003
[11] Z. Nehari, Conformal Mapping, Dover Publications, Inc, New York, 1952.
[12] L. Reichel, A fast method for solving certain integral equations of the first kind with application to conformal mapping, J. Comp. Appl. Math. 14 (1986), 125–142. · Zbl 0587.30007 · doi:10.1016/0377-0427(86)90134-2
[13] P.N. Swarztrauber, On the numerical solution of the Dirichlet problem for a region of general shape, SIAM J. Numer. Anal. 9 (1972), 300–306. · Zbl 0257.65083 · doi:10.1137/0709029
[14] R. Wegmann, Fast conformal mapping of multiply connected regions, J. Comp. Appl. Math. 130 (2001), 119–138. · Zbl 1058.30032 · doi:10.1016/S0377-0427(99)00387-8
[15] R. Wegmann, A. H. M. Murid and M. M. S. Nasser, The Riemann-Hilbert problem and the generalized Neumann kernel, J. Comp. Appl. Math. 182 (2005), 388–415. · Zbl 1070.30017 · doi:10.1016/j.cam.2004.12.019
[16] R. Wegmann and M. M. S. Nasser, The Riemann-Hilbert problem and the generalized Neumann kernel on multiply connected regions, J. Comp. Appl. Math. 214 (2008), 36–57. · Zbl 1157.45303 · doi:10.1016/j.cam.2007.01.021
[17] G. C. Wen, Conformal Mapping and Boundary Value Problems, English translation of Chinese edition 1984, American Mathematical Society, Providence, 1992.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.