Continuum modeling of supply chain networks using discontinuous Galerkin methods. (English) Zbl 1159.74317

Summary: Using a connectivity matrix, we establish a continuum modeling approach with partial differential equations of conservation laws for simulating materials flow in supply chain networks. A number of existing and new constitutive relationships for modeling velocity are summarized or proposed. To effectively treat strong advection components within the modeling system, we apply discontinuous Galerkin (DG) methods for solving production flow in a supply chain network. In addition, a number of DG properties are analyzed for treating network flow. In particular, a nearly optimal error estimate is obtained using a new estimating technique that utilizes two physical meaningful assumptions on the connectivity matrix. Numerical examples are provided to simulate a single node, a serial supply chain and an entire network as well as to investigate the influence of influx variation and node shut-down to the profiles of work in progress (WIP) and outflux. It is shown that the proposed modeling approach is applicable to a large number of scenarios including re-entrant lines and the proposed DG algorithm is robust and accurate for predicting WIP and outflux behaviors.


74A99 Generalities, axiomatics, foundations of continuum mechanics of solids
74S30 Other numerical methods in solid mechanics (MSC2010)
Full Text: DOI


[1] Adams, R.A., Sobolev spaces, (1975), Academic Press New York · Zbl 0186.19101
[2] Anderson, E.J., A new continuous model for job shop scheduling, Int. J. syst. sci., 12, 1469-1475, (1981) · Zbl 0468.90033
[3] Armbruster, D.; Marthaler, D.; Ringhofer, C., Kinetic and fluid model hierarchies for supply chains, Multiscale model. simul., 2, 1, 43-61, (2003) · Zbl 1078.90031
[4] Armbruster, D.; Marthaler, D.E.; Ringhofer, C.; Kempf, K.; Jo, T.-C., A continuum model for a re-entrant factory, Oper. res., 54, 5, 933-950, (2006) · Zbl 1167.90477
[5] Armbruster, D.; Ringhofer, C., Thermalized kinetic and fluid models for reentrant supply chains, Multiscale model. simul., 3, 4, 782-800, (2005) · Zbl 1108.90006
[6] Arnold, D.N., An interior penalty finite element method with discontinuous elements, SIAM J. numer. anal., 19, 742-760, (1982) · Zbl 0482.65060
[7] Babuška, I.; Zlámal, M., Nonconforming elements in the finite element method with penalty, SIAM J. numer. anal., 10, 863-875, (1973) · Zbl 0237.65066
[8] Baumann, C.E.; Oden, J.T., A discontinuous hp finite element method for convection – diffusion problems, Comput. methods appl. mech. engrg., 175, 3-4, 311-341, (1999) · Zbl 0924.76051
[9] Chen, Z.; Chen, H., Pointwise error estimates of discontinuous Galerkin methods with penalty for second-order elliptic problems, SIAM J. numer. anal., 42, 3, 1146-1166, (2004) · Zbl 1081.65102
[10] Cockburn, B.; Karniadakis, G.E.; Shu, C.-W., The development of the discontinuous Galerkin methods, (), 3-50 · Zbl 0989.76045
[11] Cockburn, B.; Shu, C.-W., The local discontinuous Galerkin method for time-dependent convection – diffusion systems, SIAM J. numer. anal., 35, 6, 2440-2463, (1998), (Electronic) · Zbl 0927.65118
[12] Dawson, C.; Sun, S.; Wheeler, M.F., Compatible algorithms for coupled flow and transport, Comput. methods appl. mech. engrg., 193, 2565-2580, (2004) · Zbl 1067.76565
[13] M. Dong, Process modeling, performance analysis and configuration simulation in integrated supply chain network design, PhD thesis, Virginia Polytechnic Institute and State University, 2001.
[14] Dong, M.; Chen, F.F., The impacts of component commonality on integrated supply chain network configurations: a state and resource based simulation study, Int. J. adv. manuf. technol., 27, 3-4, 397-406, (2005)
[15] Dong, M.; Chen, F.F., Performance modeling and analysis of integrated logistic chains: an analytic framework, Eur. J. oper. res., 162, 1, 83-98, (2005) · Zbl 1132.90300
[16] Douglas, J.; Dupont, T., Interior penalty procedures for elliptic and parabolic Galerkin methods, Lect. notes phys., 58, 207-216, (1976)
[17] Gottlich, S.; Herty, M.; Klar, A., Network models for supply chains, Commun. math. sci., 3, 4, 545-559, (2005) · Zbl 1115.90008
[18] Karakashian, O.A.; Pascal, F., A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. numer. anal., 41, 6, 2374-2399, (2003) · Zbl 1058.65120
[19] Larson, M.G.; Niklasson, A.J., Analysis of a nonsymmetric discontinuous Galerkin method for elliptic problems: stability and energy error estimates, SIAM J. numer. anal., 42, 1, 252-264, (2004) · Zbl 1078.65106
[20] Lee, Y.H.; Cho, M.K.; Kim, S.J.; Kim, Y.B., Supply chain simulation with discrete-continuous combined modeling, Comput. ind. engrg., 43, 1-2, 375-392, (2002)
[21] Oden, J.T.; Babuška, I.; Baumann, C.E., A discontinuous hp finite element method for diffusion problems, J. comput. phys., 146, 491-516, (1998) · Zbl 0926.65109
[22] Oden, J.T.; Wellford, L.C., Discontinuous finite element approximations for the analysis of shock waves in nonlinearly elastic materials, J. comput. phys., 19, 2, 179-210, (1975) · Zbl 0328.73034
[23] Rivière, B.; Wheeler, M.F.; Girault, V., A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM J. numer. anal., 39, 3, 902-931, (2001) · Zbl 1010.65045
[24] Schötzau, D.; Schwab, C., Time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method, SIAM J. numer. anal., 38, 837-875, (2001) · Zbl 0978.65091
[25] S. Sun, Discontinuous Galerkin methods for reactive transport in porous media, PhD thesis, The University of Texas at Austin, 2003.
[26] Sun, S.; Wheeler, M.F., Discontinuous Galerkin methods for coupled flow and reactive transport problems, Appl. numer. math., 52, 2-3, 273-298, (2005) · Zbl 1079.76584
[27] Sun, S.; Wheeler, M.F., \(L^2(H^1)\) norm a posteriori error estimation for discontinuous Galerkin approximations of reactive transport problems, J. sci. comput., 22, 501-530, (2005) · Zbl 1066.76037
[28] Sun, S.; Wheeler, M.F., Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media, SIAM J. numer. anal., 43, 1, 195-219, (2005) · Zbl 1086.76043
[29] Sun, S.; Wheeler, M.F., Anisotropic and dynamic mesh adaptation for discontinuous Galerkin methods applied to reactive transport, Comput. methods appl. mech. engrg., 195, 25-28, 3382-3405, (2006) · Zbl 1175.76096
[30] Sun, S.; Wheeler, M.F., A posteriori error estimation and dynamic adaptivity for symmetric discontinuous Galerkin approximations of reactive transport problems, Comput. methods appl. mech. engrg., 195, 632-652, (2006) · Zbl 1091.76040
[31] Sun, S.; Wheeler, M.F., Discontinuous Galerkin methods for simulating bioreactive transport of viruses in porous media, Adv. water resourc., 30, 6-7, 1696-1710, (2007)
[32] Wheeler, M.F., An elliptic collocation-finite element method with interior penalties, SIAM J. numer. anal., 15, 152-161, (1978) · Zbl 0384.65058
[33] Zou, Y.; Kevrekidis, I.G.; Armbruster, D., Multiscale analysis of re-entrant production lines: an equation-free approach, Phys. A: statist. mech. appl., 363, 1, 1-13, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.