×

Analysis method of planar interface cracks of arbitrary shape in three-dimensional transversely isotropic magnetoelectroelastic bimaterials. (English) Zbl 1159.74412

Summary: Using the fundamental solutions for three-dimensional transversely isotropic magnetoelectroelastic bimaterials, the extended displacements at any point for an internal crack parallel to the interface in a magnetoelectroelastic bimaterial are expressed in terms of the extended displacement discontinuities across the crack surfaces. The hyper-singular boundary integral-differential equations of the extended displacement discontinuities are obtained for planar interface cracks of arbitrary shape under impermeable and permeable boundary conditions in three-dimensional transversely isotropic magnetoelectroelastic bimaterials. An analysis method is proposed based on the analogy between the obtained boundary integral-differential equations and those for interface cracks in purely elastic media. The singular indexes and the singular behaviors of near crack-tip fields are studied. Three new extended stress intensity factors at crack tip related to the extended stresses are defined for interface cracks in three-dimensional transversely isotropic magnetoelectroelastic bimaterials. A penny-shaped interface crack in magnetoelectroelastic bimaterials is studied by using the proposed method.
The results show that the extended stresses near the border of an impermeable interface crack possess the well-known oscillating singularity \(r ^{- 1/2\pm i\varepsilon }\) or the non-oscillating singularity \(r^{ - 1/2\pm \kappa} \). Three-dimensional transversely isotropic magnetoelectroelastic bimaterials are categorized into two groups, i.e., \(\varepsilon \)-group with non-zero value of \(\varepsilon \) and \(\kappa \)-group with non-zero value of \(\kappa \). The two indexes \(\varepsilon \) and \(\kappa \) do not coexist for one bimaterial. However, the extended stresses near the border of a permeable interface crack have only oscillating singularity and depend only on the mechanical loadings.

MSC:

74R10 Brittle fracture
74F15 Electromagnetic effects in solid mechanics
74E30 Composite and mixture properties
74E10 Anisotropy in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chue, C. H.; Liu, T. J. C.: Magneto-electro-elastic antiplane analysis of a bimaterial batio3 – cofe2o4 composite wedge with an interface crack, Theor. appl. Fract. mech. 44, 275-296 (2005)
[2] Ding, H. J.; Jiang, A. M.; Hou, P. H.; Chen, W. Q.: Green’s functions for two-phase transversely isotropic magneto-electro-elastic media, Eng. anal. Bound. elem. 29, 551-561 (2005) · Zbl 1182.74050 · doi:10.1016/j.enganabound.2004.12.010
[3] Feng, W.J., Pan, E., accepted for publication. Dynamic fracture behavior of an internal interfacial crack between two dissimilar magneto-electro-elastic plates. Eng. Fract. Mech.
[4] Gao, C. F.; Kessler, H.; Balke, H.: Crack problems in magnetoelectroelastic solids. Part I: Exact solution of a crack, Int. J. Eng. sci. 41, 969-981 (2003) · Zbl 1211.74187 · doi:10.1016/S0020-7225(02)00323-3
[5] Gao, C. F.; Tong, P.; Zhang, T. Y.: Interfacial crack problems in magneto-electroelastic solids, Int. J. Eng. sci. 41, 2105-2121 (2003)
[6] Gao, C. F.; Noda, N.: Thermal-induced interfacial cracking of magnetoelectroelastic materials, Int. J. Eng. sci. 42, 1347-1360 (2004)
[7] Gao, C. F.; Tong, P.; Zhang, T. Y.: Fracture mechanics for a mode III crack in a magnetoelectroelastic solid, Int. J. Solids struct. 41, 6613-6629 (2004) · Zbl 1179.74117 · doi:10.1016/j.ijsolstr.2004.06.015
[8] Huang, J. H.; Chiu, Y. H.; Liu, H. K.: Magneto-electro-elastic eshelby tensors for a piezoelectric – piezomagnetic composite reinforced ellipsoidal inclusions, J. appl. Phys. 83, 5364-5370 (1998)
[9] Ioakimidis, N. I.: A natural approach to the introduction of finite-part integrals to crack problems of three-dimensional elasticity, Eng. fract. Mech. 16, 669-673 (1982)
[10] Kassir, M. K.; Sih, G. C.: Three-dimensional crack problem: mechanics of fracture, Three-dimensional crack problem: mechanics of fracture 2 (1977) · Zbl 0312.73112
[11] Neelakanta, P. S.: Handbook of electromagnetic materials, (1995)
[12] Ou, Z. C.; Wu, X. J.: On the crack-tip stress singularity of interfacial cracks in transversely isotropic piezoelectric bimaterials, Int. J. Solids struct. 40, 7499-7511 (2003) · Zbl 1063.74043 · doi:10.1016/j.ijsolstr.2003.08.021
[13] Pan, E.: Three-dimensional Green’s functions in an-isotropic magneto-electro-elastic bi-materials, Z. angew. Math. phys. 53, 815-838 (2002) · Zbl 1031.74024 · doi:10.1007/s00033-002-8184-1
[14] Sih, G. C.; Jones, R.; Song, Z. F.: Piezomagnetic and piezoelectric poling effects on mode I and II crack initiation behavior of magnetoelectroelastic materials, Theor. appl. Fract. mech. 40, 161-186 (2003)
[15] Song, Z. F.; Sih, G. C.: Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation, J. theor. Appl. fract. Mech. 39, 189-207 (2003)
[16] Tang, R. J.; Chen, M. C.; Yue, J. C.: Theoretical analysis of three-dimensional interface crack, Sci. chin. A 28, 177-182 (1998) · Zbl 0928.74085
[17] Tian, W. Y.; Rajapakse, R. K. N.D.: Fracture analysis of magnetoelectroelastic solids by using path independent integrals, Int. J. Fract. 131, 311-335 (2005) · Zbl 1196.74217 · doi:10.1007/s10704-004-5103-9
[18] Wang, B. L.; Mai, Y. W.: Crack tip field in piezoelectric/piezomagnetic media, Eur. J. Mech. A solids 22, 591-602 (2003) · Zbl 1032.74641 · doi:10.1016/S0997-7538(03)00062-7
[19] Wang, B. L.; Mai, Y. W.: Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials, Int. J. Solids struct. 44, 387-398 (2007) · Zbl 1178.74145 · doi:10.1016/j.ijsolstr.2006.04.028
[20] Zhao, M. H.; Fan, C. Y.; Yang, F.; Liu, T.: Analysis method of planar cracks of arbitrary shape in the isotropic plane of a three-dimensional transversely isotropic magnetoelectroelastic medium, Int. J. Solids struct. 44, 4505-4523 (2007) · Zbl 1175.74077 · doi:10.1016/j.ijsolstr.2006.11.039
[21] Zhao, M. H.; Yang, F.; Liu, T.: Analysis of a penny-shaped crack in a magnetoelectroelastic medium, Philos. mag. 86, 4397-4416 (2006)
[22] Zhao, M. H.; Wang, H.; Yang, F.; Liu, T.: A magnetoelectroelastic medium with an elliptical cavity under combined mechanical – electric – magnetic loading, Theor. appl. Fract. mech. 45, 227-237 (2006)
[23] Zhou, Z. G.; Wang, B.; Sun, Y. G.: Two collinear interface cracks in magneto-electro-elastic composites, Int. J. Eng. sci. 42, 1155-1167 (2004) · Zbl 1211.76107 · doi:10.1016/j.ijengsci.2004.01.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.