×

zbMATH — the first resource for mathematics

Exponential stabilization of chaotic systems with delay by periodically intermittent control. (English) Zbl 1159.93353
Editorial remark: No review copy delivered

MSC:
93D21 Adaptive or robust stabilization
37N35 Dynamical systems in control
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chen G., Controlling Chaos and Bifurcations in Engineering Systems (1999)
[2] DOI: 10.1007/b79666
[3] Yang T., Impulsive Control Theory (2001) · Zbl 0996.93003
[4] DOI: 10.1063/1.2102107 · Zbl 1144.37371
[5] DOI: 10.1063/1.2213676 · Zbl 1146.37327
[6] DOI: 10.1103/PhysRevLett.64.1196 · Zbl 0964.37501
[7] DOI: 10.1103/PhysRevE.67.036203
[8] DOI: 10.1103/PhysRevE.51.5109
[9] DOI: 10.1103/PhysRevE.50.3410
[10] DOI: 10.1016/0167-2789(96)00011-5 · Zbl 1194.93068
[11] DOI: 10.1016/S0167-2789(00)00112-3 · Zbl 0963.34030
[12] DOI: 10.1126/science.267326 · Zbl 1383.92036
[13] DOI: 10.1007/BF01011917 · Zbl 0659.58036
[14] DOI: 10.1109/81.251826 · Zbl 0844.58056
[15] DOI: 10.1016/S0375-9601(02)00538-8 · Zbl 0995.92004
[16] Halanay A., Differential Equations: Stability, Oscillations, Time Lags (1966) · Zbl 0144.08701
[17] DOI: 10.1007/978-94-015-8034-2
[18] DOI: 10.1109/81.802844 · Zbl 0956.68133
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.