×

zbMATH — the first resource for mathematics

Stability analysis of delay differential equation models of HIV-1 therapy for fighting a virus with another virus. (English) Zbl 1160.37437
Summary: Considering two kinds of delays accounting, respectively, for (i) a latent period between the time target cells are contacted by the virus particles and the time the virions enter the cells and (ii) a virus production period for new virions to be produced within and released from the infected cells, we develop and analyze a mathematical model for HIV-1 therapy by fighting a virus with another virus. For the different values of the basic reproduction number and the second basic reproduction number, we investigate the stability of the infection-free equilibrium, the single-infection equilibrium and the double-infection equilibrium. We conclude that increasing delays will decrease the values of the basic reproduction number and the second basic reproduction number. Our results have potential applications in HIV-1 therapy. The approach we use here is a combination of analysis of characteristic equations, Fluctuation Lemma and Lyapunov function.

MSC:
37N25 Dynamical systems in biology
34K13 Periodic solutions to functional-differential equations
92D30 Epidemiology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Castillo-Chavez, C.; Thieme, H., Asymptotically autonomous epidemic models, (), 33-50
[2] Gradshteyn, I.S.; Ryzhik, I.M., Table of integrals series and products, (1980), Academic Press New York, p. 18 · Zbl 0521.33001
[3] Grossman, Z.; Polis, M.; Feinberg, M.; Grossman, Z.; Levi, I.; Jankelevich, S.; Yarchoan, R.; Boon, J.; de Wolf, F.; Lange, J.; Goudsmit, J.; Dimitrov, D.; Paul, W., Ongoing HIV dissemination during HAART, Nat. med., 5, 1099-1104, (1999)
[4] Hasse, A., Population biology of HIV-1 infection: virus and CD4+ T cell demography and dynamics in lymphatic tissues, Ann. rev. immunol., 17, 625-656, (1999)
[5] Herz, V.; Bonhoeffer, S.; Anderson, R.; May, R.; Nowak, M., Viral dynamics in vivo: limitations on estimations on intracellular delay and virus decay, Proc. natl. acad. sci. USA, 93, 7247-7251, (1996)
[6] Hirsh, W.; Hanisch, H.; Gabriel, J., Differential equation models of some parasitic infections: methods for the study of asymptotic behaviour, Comm. pure appl. math., 38, 733-753, (1985) · Zbl 0637.92008
[7] Ho, D.; Neumann, A.; Perelson, A.; Chen, W.; Leonard, J.; Markowitz, M., Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, 373, 123-126, (1995)
[8] Jacquez, J.; Simon, C., Qualitative theory of compartmental systems with lags, Math. biosci., 180, 329-362, (2002) · Zbl 1033.92002
[9] X. Jiang, P. Yu, Z. Yuan, X. Zou, Dynamics of a HIV-1 therapy model of fighting a virus with another virus, J. Biol. Dynam., in press · Zbl 1342.92095
[10] Kepler, T.; Perelson, A., Drug concentration heterogeneity facilitates the evolution of drug resistance, Proc. natl. acad. sci. USA, 95, 11514-11519, (1998) · Zbl 0919.92023
[11] LaSalle, J., The stability of dynamics systems, (1976), SIAM Philadelphia · Zbl 0355.34037
[12] Levy, J., HIV and the pathogenesis of AIDS, (1998), Amer. Med. Soc. Washington, DC
[13] Lloyd, A., Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods, Proc. R. soc. lond. B, 268, 985-993, (2001)
[14] MacDonald, N., Biological delay systems, (1989), Cambridge University · Zbl 0669.92001
[15] Mebatsion, T.; Finke, S.; Weiland, F.; Conzelmann, K., A CXCR4/CD4 pseudotype rhabdovirus that selectively infects HIV-1 envelope protein-expressing cells, Cell, 90, 841-847, (1997)
[16] Mittler, J.; Sulzer, B.; Neumann, A.; Perelson, A., Influence of delayed viral production on viral dynamics in HIV-1 infected patients, Math. biosci., 152, 143-163, (1998) · Zbl 0946.92011
[17] Murray, J., Mathematical biology, (1989), Springer New York · Zbl 0682.92001
[18] Mukandavire, Z.; Garira, W.; Chiyaka, C., Asymptotic properties of an HIV/AIDS model with a time delay, J. math. anal. appl., 330, 916-933, (2007) · Zbl 1110.92043
[19] Nelson, P.; Murray, J.; Perelson, A., A model of HIV-1 pathogenesis that includes an intracellular delay, Math. biosci., 163, 201-215, (2000) · Zbl 0942.92017
[20] Nelson, P.; Mittler, J.; Perelson, A., Effect of drug efficacy and the eclipse phase of the viral life cycle on estimates of HIV-1 viral dynamic parameters, J. aids, 26, 405-412, (2001)
[21] Nelson, P.; Perelson, A., Mathematical analysis of delay differential equation models of HIV-1 infection, Math. biosci., 179, 73-94, (2002) · Zbl 0992.92035
[22] Nolan, G., Harnessing viral devices as pharmaceuticals: fighting HIV-1s fire with fire, Cell, 90, 821-824, (1997)
[23] Nowak, M.; May, R., Virus dynamics, (2000), Oxford University · Zbl 1101.92028
[24] Perelson, A.; Kirschner, D.; Boer, R., Dynamics of HIV infection of CD^{+}4T cells, Math. biosci., 114, 81-125, (1993) · Zbl 0796.92016
[25] Perelson, A.; Nelson, P., Mathematical models of HIV dynamics in vivo, SIAM rev., 41, 3-44, (1999) · Zbl 1078.92502
[26] Perelson, A.; Essunger, P.; Cao, Y.; Vesanen, M.; Hurley, A.; Saksela, K.; Markowitz, M.; Ho, D., Decay characteristics of HIV-1 infected compartments during combination therapy, Nature, 387, 188-191, (1997)
[27] Perelson, A.; Neumann, A.; Markowitz, M.; Leonard, J.; Ho, D., HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271, 1582-1586, (1996)
[28] Revilla, T.; Garcia-Ramos, G., Fighting a virus with a virus: A dynamic model for HIV-1 therapy, Math. biosci., 185, 191-203, (2003) · Zbl 1021.92015
[29] Ross, S., Introduction to probability models, (1993), Academic Press · Zbl 0781.60001
[30] Rouzine, I.; Sergeev, R.; Glushtsov, A., Two types of cytotoxic lymphocyte regulation explain kinetics of immune response to human immunodeficiency virus, Proc. nat. acad. sci., 103, 666-671, (2006)
[31] Stilianakis, N.; Schenzle, D., On the intra-host dynamics of HIV-1 infections, Math. biosci., 199, 1-25, (2006) · Zbl 1086.92033
[32] Tam, J., Delay effect in a model for virus replication, IMA J. math. appl. med. biol., 16, 29-37, (1999) · Zbl 0914.92012
[33] Wagner, E.; Hewlett, M., Basic virology, (1999), Blackwell New York
[34] Wei, X.; Ghosh, S.; Taylor, M.; Johnson, V.; Emini, E.; Deutsch, P.; Lifson, J.; Bonhoeer, S.; Nowak, M.; Hahn, B.; Saag, M.; Shaw, G., Viral dynamics in human immunodeficiency virus type 1 infection, Nature, 373, 117-122, (1995)
[35] Zhu, H.; Zou, X., Impact of delays in cell infection and virus production on HIV-1 dynamics, Math. med. biol., 25, 99-112, (2008) · Zbl 1155.92031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.