zbMATH — the first resource for mathematics

A Mazur–Ulam theorem in non-Archimedean normed spaces. (English) Zbl 1160.46049
Summary: The classical Mazur–Ulam theorem which states that every surjective isometry between real normed spaces is affine is not valid for non-Archimedean normed spaces. In this paper, we establish a Mazur–Ulam theorem in the non-Archimedean strictly convex normed spaces.

46S10 Functional analysis over fields other than \(\mathbb{R}\) or \(\mathbb{C}\) or the quaternions; non-Archimedean functional analysis
47S10 Operator theory over fields other than \(\mathbb{R}\), \(\mathbb{C}\) or the quaternions; non-Archimedean operator theory
26E30 Non-Archimedean analysis
12J25 Non-Archimedean valued fields
Full Text: DOI arXiv
[1] Aleksandrov, A.D., Mapping of families of sets, Soviet math. dokl., 11, 116-120, (1970) · Zbl 0213.48903
[2] Baker, J.A., Isometries in normed spaces, Amer. math. monthly, 78, 655-658, (1971) · Zbl 0214.12704
[3] Hensel, K., Über eine neue begründung der theorie der algebraischen zahlen, Jahresber. Deutsch. math. verein, 6, 83-88, (1897) · JFM 30.0096.03
[4] Khrennikov, A., Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models, (1997), Kluwer Academic Publishers Dordrecht · Zbl 0920.11087
[5] Mazur, S.; Ulam, S., Sur LES transformation isometriques d’espaces vectoriels normes, C. R. acad. sci. Paris, 194, 946-948, (1932) · Zbl 0004.02103
[6] Moslehian, M.S.; Rassias, Th.M., Stability of functional equations in non-Archimedean spaces, Appl. anal. disc. math., 1, 325-334, (2007) · Zbl 1257.39019
[7] Narici, L.; Beckenstein, E., Strange terrain—non-Archimedean spaces, Amer. math. monthly, 88, 9, 667-676, (1981) · Zbl 0486.46054
[8] Petalas, C.; Vidalis, T., A fixed point theorem in non-Archimedean vector spaces, Proc. amer. math. soc., 118, 3, 819-821, (1993) · Zbl 0791.47059
[9] Rassias, Th.M., Isometries and approximate isometries, Int. J. math. math. sci., 25, 2, 73-91, (2001) · Zbl 0990.46004
[10] Rassias, Th.M.; Šemrl, P., On the mazur – ulam theorem and the Aleksandrov problem for unit distance preserving mapping, Proc. amer. math. soc., 114, 989-993, (1992) · Zbl 0761.47004
[11] Rassias, Th.M.; Xiang, S., On mazur – ulam theorem and mappings which preserve distances, Nonlinear funct. anal. appl., 5, 2, 61-66, (2000) · Zbl 0981.46008
[12] Robert, P., Non-Archimedean normed linear spaces I,II,…,V I, Comput. math., 19, 1-77, (1968)
[13] Schikhof, W.H., Banach spaces over Nonarchimedean valued fields, Proceedings of the 14th summer conference on general topology and its applications, brookville, NY, 1999, Topology proc., 24, Summer, 547-581, (2001)
[14] Väisälä, J., A proof of the mazur – ulam theorem, Amer. math. monthly, 110, 7, 633-635, (2003) · Zbl 1046.46017
[15] van Rooij, A.C.M., ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.