×

Rational BV-algebra in string topology. (English) Zbl 1160.55006

For a smooth orientable manifold \(M\) of dimension \(m\), let \(LM\) denote the space of free loops on \(M\), and let \(HH^*(A,R)\) denote the Hochschild cohomology of a differential graded algebra \(A\) with coefficients in the differential graded \(A\)-module \(R\). Recall that Chas-Sullivan showed that the shifted homology \({\mathbb H}_*(LM,{\mathbf k}):=H_{*+m}(LM,{\mathbf k})\) has the structure of a BV-algebra. If \({\mathbf k}\) is a field, it is also known (due to a result of J. Jones) that there is an isomorphism of graded vector spaces \({\mathbb H}_*(LM,{\mathbf k})\cong HH^*(C^*(M);C^*(M))\). In this paper, the authors prove that if \(M\) is \(1\)-connected and \(ch({\mathbf k})=0\), then Poincaré duality induces a \(BV\)-algebra structure on \(HH^*(C^*(M);C^*(M))\) and that there is an isomorphism of BV-algebras, \({\mathbb H}_*(LM,{\mathbf k})\cong HH^*(C^*(M);C^*(M))\). Moreover, they prove that the Chas-Sullivan product and the BV-operator behave well with respect to a Hodge decomposition of \({\mathbb H}_*(LM)\).

MSC:

55P35 Loop spaces
55N33 Intersection homology and cohomology in algebraic topology
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
13D03 (Co)homology of commutative rings and algebras (e.g., Hochschild, André-Quillen, cyclic, dihedral, etc.)
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] J.-L. Brylinski -Loop spaces, characteristic classes and geometric quan-tization, Progress in Mathematics, vol. 107, Birkhäuser, 1993. · Zbl 0823.55002
[2] D. Burghelea & M. Vigué-Poirrier -“Cyclic homology of commu-tative algebras I”, Proceedings of the Meeting on Algebraic Homotopy, Louvain, 1986, Lectures Notes in Math. 1318 (1988), p. 51-72. · Zbl 0666.13007
[3] M. Chas & D. Sullivan -“String topology”, preprint arXiv:math.GT/9911159, 1999.
[4] D. Chataur -“A bordism approach to string topology”, Int. Math. Res. Not. 46 (2005), p. 2829-2875. · Zbl 1086.55004
[5] R. L. Cohen & J. D. S. Jones -“A homotopy theoretic realization of string topology”, Math. Ann. 324 (2002), p. 773-798. · Zbl 1025.55005
[6] R. L. Cohen, J. D. S. Jones & J. Yan -The loop homology algebra of spheres and projective spaces, Progr. Math., vol. 215, Birkhäuser, 2004. BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE · Zbl 1054.55006
[7] Y. Félix, S. Halperin & J.-C. Thomas -Differential graded algebras in topology, North-Holland, 1995.
[8] , Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer, 2001. · Zbl 0961.55002
[9] Y. Félix, L. Menichi & J.-C. Thomas -“Gerstenhaber duality in Hochschild cohomology”, J. Pure Appl. Algebra 199 (2005), p. 43-59. · Zbl 1076.55003
[10] Y. Félix & J.-C. Thomas -“Monoid of self-equivalences and free loop spaces”, Proc. Amer. Math. Soc. 132 (2004), p. 305-312. · Zbl 1055.55010
[11] Y. Felix, J.-C. Thomas & M. Vigué-Poirrier -“The Hochschild cohomology of a closed manifold”, Publ. Math. Inst. Hautes Études Sci. 99 (2004), p. 235-252. · Zbl 1060.57019
[12] Y. Félix, J.-C. Thomas & M. Vigué-Poirrier -“Rational string topology”, J. Eur. Math. Soc. (JEMS) 9 (2007), p. 123-156. · Zbl 1200.55015
[13] K. Fujii -“Iterated integrals and the loop product”, preprint arXiv:math/07040014.
[14] M. Gerstenhaber -“The cohomology structure of an associative ring”, Ann. of Math. (2) 78 (1963), p. 267-288. · Zbl 0131.27302
[15] M. Gerstenhaber & S. D. Schak -“A Hogde type decomposition for commutative algebras”, J. Pure Appl. Algebra 48 (1987), p. 229-289. · Zbl 0671.13007
[16] V. Ginsburg -“Calabi-Yau algebras”, preprint arXiv:math/0612139.
[17] K. Gruher & P. Salvatore -“Generalized string topology operations”, preprint arXiv:math.AT/0602210. · Zbl 1143.57012
[18] A. Hamilton & A. Lazarev -“Homotopy algebras and noncommutative geometry”, preprint arXiv:math.QA/0410621.
[19] J. D. S. Jones -“Cyclic homology and equivariant homology”, Invent. Math. 87 (1987), p. 403-423. · Zbl 0644.55005
[20] P. Lambrechts & D. Stanley -“Poincaré duality and commutative differential graded algebras”, preprint arXiv:math/0701309. · Zbl 1172.13009
[21] J.-L. Loday -“Opérations sur l”homologie cyclique des algèbres commu-tatives”, Invent. Math. 96 (1989), p. 205-230. · Zbl 0686.18006
[22] L. Menichi -“String topology for spheres”, preprint arXiv:math/AT/0609304. · Zbl 1159.55004
[23] , “Batalin-Vilkovisky algebras and cyclic cohomology of Hopf alge-bras”, K-Theory 32 (2004), p. 231-251. · Zbl 1101.19003
[24] S. A. Merkulov -“De Rham model for string topology”, Int. Math. Res. Not. (2004), p. 2955-2981. · Zbl 1066.55008
[25] A. Stacey -“The differential topology of loop spaces”, preprint arXiv:math.DG/0510097.
[26] J. Stasheff -“The intrinsic bracket on the deformation complex of an associative algebra”, J. Pure Appl. Algebra 89 (1993), p. 231-235. · Zbl 0786.57017
[27] D. Sullivan -“Open and closed string field theory interpreted in classi-cal algebraic topology”, in Topology, geometry and quantum field theory, London Math. Soc. Lecture Note Ser., vol. 308, Cambridge Univ. Press, 2004, p. 344-357. · Zbl 1088.81082
[28] T. Tradler -“The BV algebra on Hochschild cohomology induced by infinity inner products”, preprint arXiv:math.QA/0210150.
[29] T. Tradler & M. Zeinalian -“Infinity structure of Poincaré duality spaces”, Algebr. Geom. Topol. 7 (2007), p. 233-260, Appendix by Dennis Sullivan. · Zbl 1137.57025
[30] D. Vaintrob -“The string topology BV algebra, Hochschild cohomology and the Goldman bracket on surfaces”, preprint arXiv:math/0702859.
[31] M. Vigué-Poirrier -“Homologie de Hochschild et homologie cyclique des algèbres différentielles graduées”, Astérisque 191 (1990), p. 7, 255-267, International Conference on Homotopy Theory (Marseille-Luminy, 1988). · Zbl 0728.19003
[32] , “Décompositions de l”homologie cyclique des algèbres différen-tielles graduées commutatives”, K-Theory 4 (1991), p. 399-410. · Zbl 0731.19004
[33] M. Vigué-Poirrier & D. Burghelea -“A model for cyclic homology and algebraic K-theory of 1-connected topological spaces”, J. Differential Geom. 22 (1985), p. 243-253. · Zbl 0595.55009
[34] M. Vigué-Poirrier & D. Sullivan -“The homology theory of the closed geodesic problem”, J. Differential Geometry 11 (1976), p. 633-644. · Zbl 0361.53058
[35] BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.