×

zbMATH — the first resource for mathematics

Impulsive synchronization of Chen’s hyperchaotic system. (English) Zbl 1160.94398
Summary: In this Letter the impulsive synchronization of the Chen’s hyperchaotic systems is discussed. Some new and sufficient conditions on varying impulsive distance are established in order to guarantee the synchronizabillity of the systems using the synchronization method. In particular, some simple conditions are derived in synchronizing the systems by equal impulsive distances. Two illustrative examples are provided to show the feasibility and the effectiveness of the proposed method. The boundaries of the stable regions are also estimated.

MSC:
94C05 Analytic circuit theory
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Pecora, L.M.; Carroll, T.L., Phys. rev. lett., 64, 821, (1990)
[2] Huang, L.; Feng, R.; Wang, M., Phys. lett. A, 320, 271, (2004)
[3] Lu, J.; Wu, X.; Lü, J., Phys. lett. A, 305, 365, (2002)
[4] Li, C.; Liao, X., Phys. lett. A, 328, 47, (2004)
[5] Li, D.; Lu, J.A.; Wu, X., Chaos solitons fractals, 23, 79, (2005)
[6] Chen, D.; Sun, J.; Huang, C., Chaos solitons fractals, 28, 213, (2006)
[7] Tasev, Z.; Kocarev, L.; Junge, L.; Parlitz, U., Int. J. bifur. chaos, 10, 869, (2000)
[8] Li, Z.G.; Wen, C.Y.; Soh, Y.C.; Xie, W.X., IEEE trans. circuits systems I, 48, 1351, (2001)
[9] Peng, J.H.; Ding, E.J.; Ding, M.; Yang, W., Phys. rev. lett., 76, 904, (1996)
[10] Bu, S.L.; Wang, S.Q.; Ye, H.Q., Physica D, 164, 45, (2002)
[11] Grassi, G.; Miller, D.A., IEEE trans. circuits systems I, 48, 366, (2001)
[12] Cafagna, D.; Grassi, G., Synchronizing hyperchaos using a scalar signal: a unified framework for systems with one or several non-linearities, (), 575-580
[13] Kapitaniak, T.; Chua, L.O.; Zhong, G.Q., IEEE trans. circuits systems I, 41, 499, (1994)
[14] Brucoli, M.; Carnimeo, L.; Grassi, G., Int. J. bifur. chaos, 6, 1673, (1996)
[15] Itoh, M.; Yang, T.; Chua, L.O., Int. J. bifur. chaos, 11, 551, (2001)
[16] Grassi, G.; Mascolo, S., IEEE trans. circuits systems I, 46, 1135, (1999)
[17] Stojanovski, T.; Kocarev, L.; Parlitz, U.; Harris, R., Phys. rev. E, 55, 4035, (1997)
[18] Li, C.; Liao, X., Chaos solitons fractals, 22, 857, (2004)
[19] Parlitz, U.; Kocarev, L.; Stojanovski, T.; Junge, L., Physica D, 109, 139, (1997)
[20] Yan, Z., Appl. math. comput., 168, 1239, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.