×

zbMATH — the first resource for mathematics

Explicit formulas for the Nörlund polynomials \(B_n^{(x)}\) and \(b_n^{(x )}\). (English) Zbl 1161.11314
Summary: The authors establish some explicit formulas and representations for the Nörlund polynomial \(B_n^{(x)}\) and \(b_n^{(x)}\) Several identities involving Bernoulli numbers, Nörlund numbers, Stirling numbers and the associated Stirling numbers are also presented.

MSC:
11B68 Bernoulli and Euler numbers and polynomials
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
11B73 Bell and Stirling numbers
05A15 Exact enumeration problems, generating functions
05A19 Combinatorial identities, bijective combinatorics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G., ()
[2] Luke, Y.L., ()
[3] Srivastava, H.M.; Choi, J., Series associated with the zeta and related functions, (2001), Kluwer Academic Publishers New York · Zbl 1014.33001
[4] Srivastava, H.M., Some formulas for the Bernoulli and Euler polynomials at rational arguments, (), 77-84 · Zbl 0978.11004
[5] Srivastava, H.M.; Pintér, Á., Remarks on some relationships between the Bernoulli and Euler polynomials, Appl. math. lett., 17, 4, 375-380, (2004) · Zbl 1070.33012
[6] Srivastava, H.M.; Todorov, P.G., An explicit formula for the generalized Bernoulli polynomials, J. math. anal. appl., 130, 509-513, (1988) · Zbl 0621.33008
[7] Luo, Q.-M.; Srivastava, H.M., Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials, Computers math. applic., 51, 3/4, 631-642, (2006) · Zbl 1099.33011
[8] Adelberg, A., Arithemetic properties of the Nörlund polynomial bnyl, Discrete math., 284, 5-13, (1999)
[9] Carlitz, L., Some properties of the Nörlund polynomial Bn(χ), Math. nachr., 33, 297-311, (1967) · Zbl 0154.29301
[10] Comtet, L., Advanced combinatorics: the art of finite and infinite expansions, (1974), Reidel Dordrecht, (Translated from the French by J.W. Nienhuys)
[11] Howard, F.T., Congruences and recurrences for Bernoulli numbers of higher order, Fibonacci quart., 32, 316-328, (1994) · Zbl 0820.11009
[12] Nörlund, N.E., Vorlesungenüber differenzenrechnung, (1924), Springer-Verlag Dordrecht, Reprinted by Chelsea Publishing Company, Bronx, New York, (1954) · JFM 50.0318.04
[13] Howard, F.H., The power of 2 dividing the coefficients of certain power series, Fibonacci quart., 39, 358-364, (2001) · Zbl 1002.11019
[14] Jordan, C., Calculus of finite differences, (1965), Chelsea Publishing Company Berlin · Zbl 0154.33901
[15] Howard, F.T., Congruences for the Stirling numbers and associated Stirling numbers, Acta arith., 55, 29-41, (1990) · Zbl 0648.10008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.